cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163075 Primes of the form k$ + 1. Here '$' denotes the swinging factorial function (A056040).

This page as a plain text file.
%I A163075 #10 May 08 2020 17:38:05
%S A163075 2,3,7,31,71,631,3433,51481,2704157,280816201,4808643121,35345263801,
%T A163075 2104098963721,94684453367401,1580132580471901,483701705079089804581,
%U A163075 6892620648693261354601,410795449442059149332177041,2522283613639104833370312431401
%N A163075 Primes of the form k$ + 1. Here '$' denotes the swinging factorial function (A056040).
%H A163075 Jinyuan Wang, <a href="/A163075/b163075.txt">Table of n, a(n) for n = 1..50</a>
%H A163075 Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011.
%H A163075 Peter Luschny, <a href="http://www.luschny.de/math/primes/SwingingPrimes.html"> Swinging Primes.</a>
%e A163075 Since 3$ = 4$ = 6 the prime 7 is listed, however only once.
%p A163075 a := proc(n) select(isprime, map(x -> A056040(x)+1,[$1..n])) end:
%t A163075 Reap[Do[f = n!/Quotient[n, 2]!^2; If[PrimeQ[p = f + 1], Sow[p]], {n, 1, 70}]][[2, 1]] // Union (* _Jean-François Alcover_, Jun 28 2013 *)
%Y A163075 Cf. A056040, A088332, A163077 (arguments k), A163074, A163076.
%K A163075 nonn
%O A163075 1,1
%A A163075 _Peter Luschny_, Jul 21 2009
%E A163075 More terms from _Jinyuan Wang_, Mar 22 2020