This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163077 #11 May 08 2020 17:46:42 %S A163077 0,1,2,3,4,5,8,9,14,15,24,27,31,38,44,45,49,67,76,92,99,119,124,133, %T A163077 136,139,144,168,171,185,265,291,332,368,428,501,631,680,689,696,765, %U A163077 789,890,1034,1233,1384,1517,1615,1634,1809,2632,2762,3925,4419,5108,5426 %N A163077 Numbers k such that k$ + 1 is prime. Here '$' denotes the swinging factorial function (A056040). %H A163077 Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011. %H A163077 Peter Luschny, <a href="http://www.luschny.de/math/primes/SwingingPrimes.html"> Swinging Primes.</a> %e A163077 0$ + 1 = 1 + 1 = 2 is prime, so 0 is in the sequence. %p A163077 a := proc(n) select(x -> isprime(A056040(x)+1),[$0..n]) end: %t A163077 fQ[n_] := PrimeQ[1 + 2^(n - Mod[n, 2])*Product[k^((-1)^(k + 1)), {k, n}]]; Select[ Range[0, 8660], fQ] (* _Robert G. Wilson v_, Aug 09 2010 *) %o A163077 (PARI) is(k) = ispseudoprime(1+k!/(k\2)!^2); \\ _Jinyuan Wang_, Mar 22 2020 %Y A163077 Cf. A002981, A163078, A163079, A163080. %K A163077 nonn %O A163077 1,3 %A A163077 _Peter Luschny_, Jul 21 2009 %E A163077 a(45)-a(56) from _Robert G. Wilson v_, Aug 09 2010