cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163079 Primes p such that p$ + 1 is also prime. Here '$' denotes the swinging factorial function (A056040).

This page as a plain text file.
%I A163079 #16 May 08 2020 17:40:14
%S A163079 2,3,5,31,67,139,631,9743,16253,17977,27901,37589
%N A163079 Primes p such that p$ + 1 is also prime. Here '$' denotes the swinging factorial function (A056040).
%C A163079 a(n) are the primes in A163077.
%H A163079 Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011.
%H A163079 Peter Luschny, <a href="http://www.luschny.de/math/primes/SwingingPrimes.html"> Swinging Primes.</a>
%e A163079 5 is prime and 5$ + 1 = 30 + 1 = 31 is prime, so 5 is in the sequence.
%p A163079 a := proc(n) select(isprime,select(k -> isprime(A056040(k)+1),[$0..n])) end:
%t A163079 f[n_] := 2^(n - Mod[n, 2])*Product[k^((-1)^(k + 1)), {k, n}]; p = 2; lst = {}; While[p < 38000, a = f@p + 1; If[ PrimeQ@a, AppendTo[ lst, p]; Print@p]; p = NextPrime@p]; lst (* _Robert G. Wilson v_, Aug 08 2010 *)
%o A163079 (PARI) is(k) = isprime(k) && ispseudoprime(1+k!/(k\2)!^2); \\ _Jinyuan Wang_, Mar 22 2020
%Y A163079 Cf. A002981, A062363, A093804, A163077.
%Y A163079 Cf. A056040. - _Robert G. Wilson v_, Aug 09 2010
%K A163079 nonn,more
%O A163079 1,1
%A A163079 _Peter Luschny_, Jul 21 2009
%E A163079 a(8)-a(12) from _Robert G. Wilson v_, Aug 08 2010