A163087 Product{k|n} k$. Here '$' denotes the swinging factorial function (A056040).
1, 1, 2, 6, 12, 30, 240, 140, 840, 3780, 15120, 2772, 221760, 12012, 960960, 9266400, 10810800, 218790, 7351344000, 923780, 16761064320, 3259095840, 3910915008, 16224936, 41977154419200, 2028117000, 249864014400
Offset: 0
Keywords
Examples
The set of positive divisors of 3 is {1,3}. Thus a(3) = 1$ * 3$ = 1 * 6 = 6.
Links
- Peter Luschny, Swinging Primes.
Programs
-
Maple
a := proc(n) local i; mul(i,i=map(swing,numtheory[divisors](n))) end:
-
Mathematica
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[0] = 1; a[n_] := Product[sf[k], {k, Divisors[n]}]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jul 26 2013 *)