This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163092 #13 Mar 23 2020 02:20:40 %S A163092 1,16,240,3600,53880,806400,12069120,180633600,2703470280,40461750000, %T A163092 605574696720,9063392310000,135648138214680,2030190989349600, %U A163092 30385049935084320,454760790684530400,6806221388012959080,101865971146974325200,1524586916316221551920 %N A163092 Number of reduced words of length n in Coxeter group on 16 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I. %C A163092 The initial terms coincide with those of A170735, although the two sequences are eventually different. %C A163092 Computed with MAGMA using commands similar to those used to compute A154638. %H A163092 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (14,14,14,-105). %F A163092 G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(105*t^4 - 14*t^3 - 14*t^2 - 14*t + 1). %t A163092 CoefficientList[ Series[(t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(105*t^4 - 14*t^3 - 14*t^2 - 14*t + 1), {t, 0, 16}], t] (* _Jean-François Alcover_, Nov 26 2013 *) %o A163092 (PARI) Vec((t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(105*t^4 - 14*t^3 - 14*t^2 - 14*t + 1) + O(t^20)) \\ _Jinyuan Wang_, Mar 23 2020 %K A163092 nonn %O A163092 0,2 %A A163092 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009 %E A163092 More terms from _Jinyuan Wang_, Mar 23 2020