This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163138 #8 Nov 03 2019 04:31:11 %S A163138 1,3,20,329,22584,7938470,12605643936,84977963809781, %T A163138 2379247465188706528,273419351336298753589802, %U A163138 128009562526607810326874017088,242979581192696030760182903464959706 %N A163138 G.f. satisfies: A(x) = exp( Sum_{n>=1} (2^n + A(x))^n * x^n/n ). %C A163138 More generally, we have the following identity: %C A163138 If A(x,q) = exp( Sum_{n>=1} (q^n + A(x,q))^n * x^n/n ), then %C A163138 A(x,q) = 1/(1-x*A(x,q))*exp( Sum_{n>=1} q^(n^2)/(1-q^n*x*A(x,q))^n*x^n/n ). %C A163138 Conjecture: if q is an integer, then A(x,q) is a power series in x with integer coefficients. %C A163138 Setting q=1 defines the g.f. of the large Schroeder numbers (A006318). %F A163138 G.f.: A(x) = 1/(1-x*A(x))*exp( Sum_{n>=1} 2^(n^2)/(1 - 2^n*x*A(x))^n * x^n/n ). %e A163138 G.f.: A(x) = 1 + 3*x + 20*x^2 + 329*x^3 + 22584*x^4 + 7938470*x^5 +... %e A163138 log(A(x)) = [2 + A(x)]*x + [2^2 + A(x)]^2*x^2/2 + [2^3 + A(x)]^3*x^3/3 +... %e A163138 log(A(x)*(1-xA(x))) = 2/(1-2xA(x))*x + 2^4/(1-4xA(x))^2*x^2/2 + 2^9/(1-8xA(x))^3*x^3/3 +... %e A163138 log(A(x)) = 3*x + 31*x^2/2 + 834*x^3/3 + 86227*x^4/4 + 39339038*x^5/5 +... %t A163138 m = 12; A[_] = 1; Do[A[x_] = Exp[Sum[(2^n + A[x])^n x^n/n, {n, 1, m}]] + O[x]^m, {m}]; CoefficientList[A[x], x] (* _Jean-François Alcover_, Nov 03 2019 *) %o A163138 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (2^m+A+x*O(x^n))^m*x^m/m))); polcoeff(A, n)} %Y A163138 Cf. A202518, A155200. %K A163138 nonn %O A163138 0,2 %A A163138 _Paul D. Hanna_, Aug 07 2009 %E A163138 Comment corrected by _Paul D. Hanna_, Aug 08 2009