cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163176 The n-th Minkowski number divided by the n-th factorial: a(n) = A053657(n)/n!.

Original entry on oeis.org

1, 1, 4, 2, 48, 16, 576, 144, 3840, 768, 9216, 1536, 3870720, 552960, 442368, 55296, 26542080, 2949120, 2229534720, 222953472, 70071091200, 6370099200, 76441190400, 6370099200, 16694755983360, 1284211998720, 570760888320
Offset: 1

Views

Author

Jonathan Sondow, Jul 24 2009

Keywords

Comments

a(n) is an integer by Legendre's formula for the exponent of the highest power of a prime dividing n!.
a(2n-1) = n*a(2n) because A053657(2n) = 2*A053657(2n-1).
See A053657 for additional comments, references, and links.

Examples

			a(4) = A053657(4)/4! = 48/24 = 2.
		

Crossrefs

Cf. A000142 (n!), A053657.

Programs

  • Julia
    using Primes
    function A163176(n)
        function L(n, p, r)
            s, q = 0, p - r
            while q <= n
                s += div(n, q)
                q *= p
            end
        s end
        n < 2 && return 1
        P = primes(n)
        prod(p^(L(n-1, p, 1) - L(n, p, 0)) for p in P)
    end
    [A163176(n) for n in 1:27] |> println  # Peter Luschny, Feb 07 2021
  • Maple
    A163176 := proc(n) local L,p;
    L := proc(n,p,r) local q,s; q := p-r; s := 0;
    do if q > n then break fi; s := s+iquo(n,q);
    q := q*p od; s end; mul(p^(L(n-1,p,1)-L(n,p,0)),
    p = select(isprime,[$2..n])) end: # Peter Luschny, Jul 26 2009
    ser := series((y/(exp(y)-1))^x, y, 29):
    c := n -> denom(coeff(ser, y, n-1)):
    seq(c(n)/n!, n=1..27); # Peter Luschny, May 13 2019
  • Mathematica
    a[n_] := (1/n!)*Product[ p^Sum[ Floor[ (n-1)/((p-1)*p^k) ], {k, 0, n}], {p, Select[ Range[2, n], PrimeQ]}]; Table[ a[n], {n, 1, 27}] (* Jean-François Alcover, Dec 07 2011 *)

Formula

a(n) = A053657(n)/A000142(n).
a(n) = (1/n!)*Product_{p prime} p^(Sum_{k>=0} ((n-1)/((p-1)p^k))).
a(n) = (1/n!)*denominator([y^(n-1)](y/(exp(y)-1))^x). - Peter Luschny, May 13 2019