This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163201 #14 Sep 08 2022 08:45:46 %S A163201 0,-1,26,-486,8775,-157600,2828384,-50754249,910750554,-16342762150, %T A163201 293258984975,-5262319011456,94428483336576,-1694450381348881, %U A163201 30405678381733850,-545607760491930150,9790534010478427479,-175684004428133950624,3152521545695969823584,-56569703818099420107225 %N A163201 Alternating sum of the cubes of the first n even-indexed Fibonacci numbers. %C A163201 Natural bilateral extension (brackets mark index 0): ..., 8775, -486, 26, -1, 0, [0], -1, 26, -486, 8775, -157600, ... This is A163201-reversed followed by A163201. That is, a(-n) = a(n-1). %H A163201 G. C. Greubel, <a href="/A163201/b163201.txt">Table of n, a(n) for n = 0..500</a> %H A163201 Stuart Clary and Paul D. Hemenway, <a href="http://dx.doi.org/10.1007/978-94-011-2058-6_12">On sums of cubes of Fibonacci numbers</a>, Applications of Fibonacci Numbers, Vol. 5 (St. Andrews, 1992), 123-136, Kluwer Acad. Publ., 1993. For the factored closed form, let alpha equal the imaginary unit in Equation (21). %H A163201 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (-20,-35,35,20,1). %F A163201 Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n). %F A163201 a(n) = Sum_{k=1..n} (-1)^k F(2k)^3. %F A163201 a(n) = (1/50)*(L(6n+3) - 6 L(2n+1) + 2) if n is even. %F A163201 a(n) = -(1/50)*(L(6n+3) - 6 L(2n+1) - 2) if n is odd. %F A163201 a(n) = (1/2) * F(n)^2 * F(n+1)^2 * (L(2n+1) + 2) if n is even. %F A163201 a(n) = -(1/2) * F(n)^2 * F(n+1)^2 * (L(2n+1) - 2) if n is odd. %F A163201 a(n) + 21*a(n-1) + 56*a(n-2) + 21*a(n-3) + a(n-4) = 4. %F A163201 a(n) + 20*a(n-1) + 35*a(n-2) - 35*a(n-3) - 20*a(n-4) - a(n-5) = 0. %F A163201 G.f.: (-x + 6*x^2 - x^3)/(1 + 20*x + 35*x^2 - 35*x^3 - 20*x^4 - x^5) = -x*(1 - 6*x + x^2)/((1 - x)*(1 + 3*x + x^2)*(1 + 18*x + x^2)). %t A163201 a[n_Integer] := If[ n >= 0, Sum[ (-1)^k Fibonacci[2k]^3, {k, 1, n} ], -Sum[ (-1)^k Fibonacci[-2k]^3, {k, 1, -n - 1} ] ] %t A163201 LinearRecurrence[{-20, -35, 35, 20, 1}, {0, -1, 26, -486, 8775}, 50] (* or *) Table[(-1)^n*(1/50)*(LucasL[6 n + 3] - 6 LucasL[2 n + 1] + 2*(-1)^n), {n, 0, 25}] (* _G. C. Greubel_, Dec 10 2016 *) %o A163201 (PARI) concat([0], Vec(-x*(1 - 6*x + x^2)/((1 - x)*(1 + 3*x + x^2)*(1 + 18*x + x^2)) + O(x^50))) \\ _G. C. Greubel_, Dec 10 2016 %o A163201 (Magma) [(-1)^n*(1/50)*(Lucas(6*n+3)-6*Lucas(2*n+1)+2*(-1)^n): n in [0..20]]; // _Vincenzo Librandi_, Dec 10 2016 %Y A163201 Cf. A119284, A163198, A163200, A163202. %K A163201 sign,easy %O A163201 0,3 %A A163201 _Stuart Clary_, Jul 24 2009