This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163213 #12 May 08 2020 17:40:35 %S A163213 1,1,1,3,1,6,9,13,12,2,19,2,5,36,6,19,43,11,47,67,39,41,70,12,17,83, %T A163213 88,81,25,53,91,97,106,79,43,39,7,29,73,6,79,115 %N A163213 Swinging Wilson remainders ((p-1)$ + (-1)^floor((p+2)/2))/p mod p, p prime. Here '$' denotes the swinging factorial function (A056040). %C A163213 If this is zero, p is a swinging Wilson prime. %H A163213 G. C. Greubel, <a href="/A163213/b163213.txt">Table of n, a(n) for n = 1..1000</a> %H A163213 Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011. %H A163213 Peter Luschny, <a href="http://www.luschny.de/math/primes/SwingingPrimes.html"> Swinging Primes.</a> %e A163213 The swinging Wilson quotient related to the 5th prime is (252+1)/11=23, so the 5th term is 23 mod 11 = 1. %p A163213 WR := proc(f,r,n) map(p->(f(p-1)+r(p))/p mod p,select(isprime,[$1..n])) end: %p A163213 A002068 := n -> WR(factorial,p->1,n); %p A163213 A163213 := n -> WR(swing,p->(-1)^iquo(p+2,2),n); %t A163213 sf[n_] := n!/Quotient[n, 2]!^2; a[n_] := (p = Prime[n]; Mod[(sf[p - 1] + (-1)^Floor[(p + 2)/2])/p, p]); Table[a[n], {n, 1, 42}] (* _Jean-François Alcover_, Jun 28 2013 *) %o A163213 (PARI) sf(n)=n!/(n\2)!^2 %o A163213 apply(p->sf(p-1)\/p%p, primes(100)) \\ _Charles R Greathouse IV_, Dec 11 2016 %Y A163213 Cf. A163211, A002068, A163210. %K A163213 nonn %O A163213 1,4 %A A163213 _Peter Luschny_, Jul 24 2009