A163243 Decimal expansion of the natural logarithm of Khinchin's constant.
9, 8, 7, 8, 4, 9, 0, 5, 6, 8, 3, 3, 8, 1, 0, 7, 8, 9, 6, 6, 9, 2, 5, 4, 7, 2, 7, 1, 4, 7, 0, 7, 2, 9, 5, 4, 3, 2, 6, 1, 9, 9, 2, 5, 4, 9, 6, 0, 8, 8, 6, 7, 3, 5, 4, 2, 7, 7, 5, 5, 3, 0, 0, 6, 8, 7, 2, 1, 0, 9, 2, 7, 0, 9, 4, 1, 8, 5, 1, 2, 9, 0, 9, 3, 8, 2, 0, 7, 6, 8, 8, 3, 3, 7, 2, 7, 5, 2, 5, 9
Offset: 0
Examples
0.98784905683381078966925472714707295432619925496...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.8, p. 60.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Robert M. Corless, Continued fractions and chaos, The American Mathematical Monthly, Vol. 99, No. 3 (1992), pp. 203-215.
- Eric Weisstein's World of Mathematics, Khinchin's Constant.
- J. W. Wrench, Jr., Further Evaluation of Khintchine's Constant, Mathematics of Computation, Vol. 14, No. 72 (1960), pp. 370-371.
Programs
-
Mathematica
RealDigits[ Log[ Khinchin], 10, 100] // First (* Jean-François Alcover, Feb 20 2013 *)
Formula
Equals log(A002210).
From Amiram Eldar, Aug 19 2020: (Start)
Equals Integral_{x=0..1} log_2(floor(1/x))/(x+1) dx (Corless, 1992).
Equals A247038/log(2). (End)