This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163306 #8 Sep 08 2022 08:45:46 %S A163306 1,7,53,419,3385,27631,226637,1863083,15331249,126219415,1039364261, %T A163306 8559569267,70494539113,580587822079,4781723152445,39382455344891, %U A163306 324356046412897,2671416441263143,22001959856357909,181209608597137475 %N A163306 a(n) = 12*a(n-1) - 31*a(n-2) for n > 1; a(0) = 1, a(1) = 7. %C A163306 Binomial transform of A090041. Inverse binomial transform of A163307. %H A163306 G. C. Greubel, <a href="/A163306/b163306.txt">Table of n, a(n) for n = 0..1000</a> %H A163306 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (12,-31). %F A163306 a(n) = ((5+sqrt(5))*(6+sqrt(5))^n + (5-sqrt(5))*(6-sqrt(5))^n)/10. %F A163306 G.f.: (1-5*x)/(1-12*x+31*x^2). %F A163306 E.g.f.: (1/5)*exp(6*x)*(5*cosh(sqrt(5)*x) + sqrt(5)*sinh(sqrt(5)*x)). - _G. C. Greubel_, Dec 18 2016 %t A163306 LinearRecurrence[{12,-31}, {1,7}, 50] (* _G. C. Greubel_, Dec 18 2016 *) %o A163306 (Magma) [ n le 2 select 6*n-5 else 12*Self(n-1)-31*Self(n-2): n in [1..20] ]; %o A163306 (PARI) Vec((1-5*x)/(1-12*x+31*x^2) + O(x^50)) \\ _G. C. Greubel_, Dec 18 2016 %Y A163306 Cf. A090041, A163307. %K A163306 nonn,easy %O A163306 0,2 %A A163306 _Klaus Brockhaus_, Jul 24 2009