cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163309 a(n) = 18*a(n-1) - 76*a(n-2) for n > 1; a(0) = 1, a(1) = 10.

This page as a plain text file.
%I A163309 #6 Sep 08 2022 08:45:46
%S A163309 1,10,104,1112,12112,133504,1482560,16539776,185041408,2073722368,
%T A163309 23263855616,261146501120,2932583993344,32939377795072,
%U A163309 370032416817152,4157190790283264,46706970546995200,524778969784385536
%N A163309 a(n) = 18*a(n-1) - 76*a(n-2) for n > 1; a(0) = 1, a(1) = 10.
%C A163309 Binomial transform of A163308. Inverse binomial transform of A163310.
%H A163309 G. C. Greubel, <a href="/A163309/b163309.txt">Table of n, a(n) for n = 0..950</a>
%H A163309 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (18,-76).
%F A163309 a(n) = ((5+sqrt(5))*(9+sqrt(5))^n + (5-sqrt(5))*(9-sqrt(5))^n)/10.
%F A163309 G.f.: (1-8*x)/(1-18*x+76*x^2).
%F A163309 E.g.f.: (1/5)*exp(9*x)*(5*cosh(sqrt(5)*x) + sqrt(5)*sinh(sqrt(5)*x)). - _G. C. Greubel_, Dec 18 2016
%t A163309 LinearRecurrence[{18,-76}, {1,10}, 50] (* _G. C. Greubel_, Dec 18 2016 *)
%o A163309 (Magma) [ n le 2 select 9*n-8 else 18*Self(n-1)-76*Self(n-2): n in [1..18] ];
%o A163309 (PARI) Vec((1-8*x)/(1-18*x+76*x^2) + O(x^50)) \\ _G. C. Greubel_, Dec 18 2016
%Y A163309 Cf. A163308, A163310.
%K A163309 nonn
%O A163309 0,2
%A A163309 _Klaus Brockhaus_, Jul 24 2009