This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163323 #35 Feb 16 2025 08:33:11 %S A163323 12,-20,76,876,3340,8812,19020,36076,62476,101100,155212,228460, %T A163323 324876,448876,605260,799212,1036300,1322476,1664076,2067820,2540812, %U A163323 3090540,3724876,4452076,5280780,6220012,7279180,8468076,9796876,11276140 %N A163323 The 4th Hermite Polynomial evaluated at n: H_4(n) = 16n^4 - 48n^2 + 12. %H A163323 Vincenzo Librandi, <a href="/A163323/b163323.txt">Table of n, a(n) for n = 0..1000</a> %H A163323 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HermitePolynomial.html">Hermite Polynomial</a> %H A163323 <a href="/index/He#Hermite">Index entries for sequences related to Hermite polynomials</a> %H A163323 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1). %F A163323 a(n) = 16*n^4 - 48*n^2 + 12. %F A163323 a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). %F A163323 G.f.: 4*(-3 +20*x -74*x^2 -44*x^3 +5*x^4)/(x-1)^5. %F A163323 H_(m+1)(x) = 2*x*H_m(x) - 2*m*H_(m-1)(x), with H_0(x)=1, H_1(x)=2x. %p A163323 A163323 := proc(n) orthopoly[H](4,n) ; end: seq(A163323(n),n=0..80) ; # _R. J. Mathar_, Jul 26 2009 %t A163323 Table[HermiteH[4,n],{n,0,50}] (* _Vladimir Joseph Stephan Orlovsky_, Nov 03 2009 *) %t A163323 Table[16 n^4 - 48 n^2 + 12, {n, 0, 30}] (* _Vincenzo Librandi_, Sep 25 2014 *) %t A163323 LinearRecurrence[{5,-10,10,-5,1},{12,-20,76,876,3340},40] (* _Harvey P. Dale_, Jul 03 2019 *) %o A163323 (Magma) [16*n^4-48*n^2+12: n in [0..40]]; // _Vincenzo Librandi_, Mar 05 2012 %o A163323 (PARI) a(n)=16*n^4-48*n^2+12 \\ _Charles R Greathouse IV_, Jan 29 2016 %o A163323 (Python) %o A163323 from sympy import hermite %o A163323 def A163323(n): return hermite(4,n) # _Chai Wah Wu_, Jan 06 2022 %Y A163323 Cf. A059343, A060821, A163322. %K A163323 sign,easy %O A163323 0,1 %A A163323 _Vincenzo Librandi_, Jul 25 2009 %E A163323 Edited by _R. J. Mathar_, Jul 26 2009