This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163328 #13 Feb 01 2021 00:15:13 %S A163328 0,1,3,2,4,6,9,5,7,27,10,12,8,28,30,11,13,15,29,31,33,18,14,16,36,32, %T A163328 34,54,19,21,17,37,39,35,55,57,20,22,24,38,40,42,56,58,60,81,23,25,45, %U A163328 41,43,63,59,61,243,82,84,26,46,48,44,64,66,62,244,246,83,85,87,47,49 %N A163328 Square array A, where entry A(y,x) has the ternary digits of x interleaved with the ternary digits of y, converted back to decimal. Listed by antidiagonals: A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ... %H A163328 Antti Karttunen, <a href="/A163328/b163328.txt">Table of n, a(n) for n = 0..3320</a> %H A163328 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A163328 a(n) = A037314(A025581(n)) + 3*A037314(A002262(n)) %F A163328 a(n) = A163327(A163330(n)). %e A163328 From _Kevin Ryde_, Oct 06 2020: (Start) %e A163328 Array A(y,x) read by downwards antidiagonals, so 0, 1,3, 2,4,6, etc. %e A163328 x=0 1 2 3 4 5 6 7 8 %e A163328 +-------------------------------------- %e A163328 y=0 | 0, 1, 2, 9, 10, 11, 18, 19, 20, %e A163328 1 | 3, 4, 5, 12, 13, 14, 21, 22, %e A163328 2 | 6, 7, 8, 15, 16, 17, 24, %e A163328 3 | 27, 28, 29, 36, 37, 38, %e A163328 4 | 30, 31, 32, 39, 40, %e A163328 5 | 33, 34, 35, 42, %e A163328 6 | 54, 55, 56, %e A163328 7 | 57, 58, %e A163328 8 | 60, %e A163328 (End) %o A163328 (Scheme) (define (A163328 n) (+ (A037314 (A025581 n)) (* 3 (A037314 (A002262 n))))) %o A163328 (PARI) A(y,x) = 3*fromdigits(digits(y,3),9) + fromdigits(digits(x,3),9); \\ _Kevin Ryde_, Oct 06 2020 %Y A163328 Inverse: A163329. Transpose: A163330. Cf. A037314 (row y=0), A208665 (column x=0) %Y A163328 Cf. A054238 is an analogous sequence for binary. Cf. A007089, A163327, A163332, A163334. %K A163328 nonn,tabl,base %O A163328 0,3 %A A163328 _Antti Karttunen_, Jul 29 2009 %E A163328 Edited by _Charles R Greathouse IV_, Nov 01 2009