This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163395 #11 Nov 09 2017 18:14:25 %S A163395 1,16,1296,262144,100000000,61917364224,56693912375296, %T A163395 72057594037927936,121439531096594251776,262144000000000000000000, %U A163395 705429498686404044207947776,2315513501476187716057433112576 %N A163395 a(n) = (n-th even nonprime)^(n-th even number). %C A163395 Here n-th even nonprime = A163300(n), n-th even number = A005843(n), (A014076 U A163300 = A141468). %H A163395 G. C. Greubel, <a href="/A163395/b163395.txt">Table of n, a(n) for n = 1..100</a> %F A163395 a(n) = A163300(n)^A005843(n). %e A163395 a(1) = 0^0 = 1, a(2) = 4^2 = 16, a(3) = 6^4 = 1296. %p A163395 A163300 := proc(n) if n = 1 then 0; else for a from procname(n-1)+2 by 2 do if not isprime(a) then return a; end if; end do; end if; end proc: A005843 := proc(n) 2*n ; end: A163395 := proc(n) A163300(n)^A005843(n-1) ; end: seq(A163395(n),n=1..13) ; # _R. J. Mathar_, Oct 14 2009 %t A163395 Join[{1}, Table[(2*(n - 1 + Mod[(n + 1), n]))^(2 n - 2), {n, 2, 10}]] (* _G. C. Greubel_, Dec 21 2016 *) %t A163395 With[{nn=30},Range[2,nn,2]^Range[0,nn-2,2]] (* _Harvey P. Dale_, Nov 09 2017 *) %Y A163395 Cf. A005843, A014076, A141468, A163300. %K A163395 nonn %O A163395 1,2 %A A163395 _Juri-Stepan Gerasimov_, Jul 26 2009 %E A163395 Extended by _R. J. Mathar_, Oct 14 2009