This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163402 #11 Feb 27 2020 11:53:49 %S A163402 1,1,1,3,9,135,1215,2835,127575,229635,3444525,1705039875, %T A163402 107417512125,13299311025,4189282972875,62839244593125, %U A163402 188517733779375,336504154796184375,9085612179496978125,2740105260483215625 %N A163402 A Minkowski-type generalization of the factorial function: F(n,k) with k = 2. %C A163402 F(n,0) = n! (A000142) %C A163402 F(n,1) = Minkowski(n)/n! (A163176) %C A163402 F(n,2) = a(n) %F A163402 P(n,k) = {p prime | k+1 <= p <= n } %F A163402 L(n,p,r) = Sum_{i>=0} floor((n-r)/((p-r)*p^i)) %F A163402 A(n,k) = Prod_{p in P(n,k)} p^(Sum_{m=0..k} (-1)^m*L(n,p,m)) %F A163402 F(n,k) = A(n,k)^((-1)^k). %e A163402 For n >= 0 %e A163402 F(n,0) 1, 1, 2, 6, 24, 120, 720, 5040, 40320, ... %e A163402 F(n,1) 1, 1, 1, 4, 2, 48, 16, 576, 144, 3840, ... %e A163402 F(n,2) 1, 1, 1, 3, 9, 135, 1215, 2835, 127575, ... %e A163402 F(n,3) 1, 1, 1, 1, 1, 1, 1, 5, 1, 25, 5, 35, ... %e A163402 F(n,4) 1, 1, 1, 1, 1, 5, 25, 175, 4375, 4375, ... %e A163402 F(n,5) 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 49, ... %p A163402 F := proc(n,k) local L,p,i; %p A163402 L := proc(n,u,r) local q,s,m; m:=n-r; %p A163402 q:=u-r; s:=0; do if q>m then break fi; %p A163402 s:=s+iquo(m,q); q:=q*u od; s end; %p A163402 mul(p^add((-1)^i*L(n,p,i),i=0..k), %p A163402 p = select(isprime,[$(k+1)..n]))^((-1)^k) end: %p A163402 a(n) := n -> F(n,2); %t A163402 F[n_, k_] := Module[{L, p, i}, L[n0_, u_, r_] := Module[{q, s, m}, m = n0-r; q = u-r; s = 0; While[True, If[q > m, Break[]]; s = s + Quotient[m, q]; q = q*u]; s]; Product[p^Sum[(-1)^i*L[n, p, i], {i, 0, k}], {p, Select[Range[k+1, n], PrimeQ]}]^((-1)^k)]; a[n_] := F[n, 2]; Table[a[n], {n, 0, 19}] (* _Jean-François Alcover_, Jan 15 2014, translated from Maple *) %o A163402 (Sage) %o A163402 def A163402(n): %o A163402 def L(n, u, r): %o A163402 m = n - r; q = u - r %o A163402 s = 0 %o A163402 while(q <= m): %o A163402 s += m//q %o A163402 q *= u %o A163402 return s %o A163402 P = filter(is_prime, [3..n]) %o A163402 return mul(p^add((-1)^i*L(n, p, i) for i in (0..2)) for p in P) %o A163402 print([A163402(n) for n in range(20)]) # _Peter Luschny_, Mar 13 2016 %Y A163402 Cf. A000142, A053657, A163176. %K A163402 nonn %O A163402 0,4 %A A163402 _Peter Luschny_, Jul 26 2009