cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A280191 Essential dimension of the spin group Spin_n over an algebraically closed field of characteristic different from 2.

Original entry on oeis.org

0, 0, 4, 5, 5, 4, 5, 6, 6, 7, 23, 24, 120, 103, 341, 326, 814, 793, 1795, 1780, 3796, 3771, 7841, 7818, 15978, 15949, 32303, 32304, 65008, 64975, 130477, 130446, 261478, 261441, 523547, 523516, 1047756, 1047715, 2096249, 2096210, 4193314, 4193269, 8387527, 8387496, 16776040, 16775991
Offset: 5

Views

Author

Skip Garibaldi, Dec 28 2016

Keywords

Comments

For n <= 14, due to Markus Rost. For n > 14, see references.

Examples

			a(14) = 7, meaning that Spin_14 has essential dimension 7, reflecting a cohomological invariant of degree 7 constructed using the G2 X G2 semidirect mu_4 subgroup.
		

References

  • S. Garibaldi, "Cohomological invariants: exceptional groups and spin groups", Memoirs of the AMS #937 (2009).
  • A. Merkurjev, Essential dimension, Quadratic forms-algebra, arithmetic, and geometry (R. Baeza, W.K. Chan, D.W. Hoffmann, and R. Schulze-Pillot, eds.), Contemp. Math., vol. 493, 2009, pp. 299-325.

Crossrefs

Agrees with sequence A163417 for n > 15 and not divisible by 4. First term of agreement is a(17) = 120.

Programs

  • Mathematica
    a[n_] := If[n>14, Which[Mod[n, 2] == 1, 2^((n-1)/2)-n(n-1)/2, Mod[n, 4] == 2, 2^((n-2)/2)-n(n-1)/2, Mod[n, 4] == 0, 2^IntegerExponent[n, 2]-n(n-1)/2 + 2^((n-2)/2)], If[n >= 5, {0, 0, 4, 5, 5, 4, 5, 6, 6, 7}[[n-4]]]];
    Table[a[n], {n, 5, 50}] (* Jean-François Alcover, Feb 18 2019, from Python *)
  • Python
    def a(n):
        if n > 14:
            if n%2 == 1:
                return 2**((n-1)/2) - n*(n-1)/2
            if n%4 == 2:
                return 2**((n-2)/2) - n*(n-1)/2
            if n%4 == 0:
                return 2**((n-2)/2) - n*(n-1)/2 + biggestdivisor(n,2)
        elif n >= 5:
            return [0,0,4,5,5,4,5,6,6,7][n-5]
        return "Error"
    def biggestdivisor(n,d): # return largest power of d dividing n
        if n%d != 0:
            return 1;
        else:
            return d*biggestdivisor(n/d, d);

Extensions

More terms from Jean-François Alcover, Mar 12 2019
Showing 1-1 of 1 results.