This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163445 #9 Sep 08 2022 08:45:46 %S A163445 1,9,79,683,5849,49785,422087,3569323,30132433,254095881,2141117983, %T A163445 18033145355,151831489769,1278083025081,10757082331991,90529250469067, %U A163445 761826636963361,6410698145440905,53943922098894703,453912096548803307 %N A163445 a(n) = 14*a(n-1) - 47*a(n-2) for n > 1; a(0) = 1, a(1) = 9. %C A163445 Binomial transform of A163444. Inverse binomial transform of A163446. %H A163445 G. C. Greubel, <a href="/A163445/b163445.txt">Table of n, a(n) for n = 0..1000</a> %H A163445 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (14,-47). %F A163445 a(n) = ((1+sqrt(2))*(7+sqrt(2))^n + (1-sqrt(2))*(7-sqrt(2))^n)/2. %F A163445 G.f.: (1-5*x)/(1-14*x+47*x^2). %F A163445 E.g.f.: exp(7*x)*( cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x) ). - _G. C. Greubel_, Dec 23 2016 %t A163445 LinearRecurrence[{14,-47}, {1,9}, 50] (* _G. C. Greubel_, Dec 23 2016 *) %o A163445 (Magma) [ n le 2 select 8*n-7 else 14*Self(n-1)-47*Self(n-2): n in [1..20] ]; %o A163445 (PARI) Vec((1-5*x)/(1-14*x+47*x^2) + O(x^50)) \\ _G. C. Greubel_, Dec 23 2016 %Y A163445 Cf. A163444, A163446. %K A163445 nonn %O A163445 0,2 %A A163445 _Klaus Brockhaus_, Jul 27 2009