This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163446 #9 Sep 08 2022 08:45:46 %S A163446 1,10,98,948,9092,86696,823432,7799760,73743376,696308896,6568853024, %T A163446 61930496832,583619061824,5498214185600,51787045136512, %U A163446 487703442676992,4592458284368128,43241719103916544,407135092031840768 %N A163446 a(n) = 16*a(n-1) - 62*a(n-2) for n > 1; a(0) = 1, a(1) = 10. %C A163446 Binomial transform of A163445. Inverse binomial transform of A163447. %H A163446 G. C. Greubel, <a href="/A163446/b163446.txt">Table of n, a(n) for n = 0..1000</a> %H A163446 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (16,-62). %F A163446 a(n) = ((1+sqrt(2))*(8+sqrt(2))^n + (1-sqrt(2))*(8-sqrt(2))^n)/2. %F A163446 G.f.: (1-6*x)/(1-16*x+62*x^2). %F A163446 E.g.f.: exp(8*x)*( cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x) ). - _G. C. Greubel_, Dec 23 2016 %t A163446 LinearRecurrence[{16,-62},{1,10},30] (* _Harvey P. Dale_, Sep 25 2015 *) %o A163446 (Magma) [ n le 2 select 9*n-8 else 16*Self(n-1)-62*Self(n-2): n in [1..19] ]; %o A163446 (PARI) Vec((1-6*x)/(1-16*x+62*x^2) + O(x^50)) \\ _G. C. Greubel_, Dec 23 2016 %Y A163446 Cf. A163445, A163447. %K A163446 nonn %O A163446 0,2 %A A163446 _Klaus Brockhaus_, Jul 27 2009