This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163454 #16 Sep 08 2022 08:45:46 %S A163454 1,20,380,7220,137180,2606230,49514760,940712040,17872229160, %T A163454 339547661640,6450936451470,122558879953620,2328449391567180, %U A163454 44237321450224020,840447989197392780,15967350630411275430 %N A163454 Number of reduced words of length n in Coxeter group on 20 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I. %C A163454 The initial terms coincide with those of A170739, although the two sequences are eventually different. %C A163454 Computed with MAGMA using commands similar to those used to compute A154638. %H A163454 G. C. Greubel, <a href="/A163454/b163454.txt">Table of n, a(n) for n = 0..750</a> %H A163454 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (18, 18, 18, 18, -171). %F A163454 G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(171*t^5 - 18*t^4 - 18*t^3 - 18*t^2 - 18*t + 1). %F A163454 a(n) = 18*a(n-1)+18*a(n-2)+18*a(n-3)+18*a(n-4)-171*a(n-5). - _Wesley Ivan Hurt_, May 10 2021 %t A163454 CoefficientList[Series[(1+x)*(1-x^5)/(1-19*x+189*x^5-171*x^6), {x, 0, 20}], x] (* or *) LinearRecurrence[{18, 18, 18, 18, -171}, {1, 20, 380, 7220, 137180, 2606230}, 20] (* _G. C. Greubel_, Dec 24 2016 *) %t A163454 coxG[{5, 171, -18}] (* The coxG program is at A169452 *) (* _G. C. Greubel_, May 13 2019 *) %o A163454 (PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-19*x+189*x^5-171*x^6)) \\ _G. C. Greubel_, Dec 24 2016 %o A163454 (Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-19*x+189*x^5-171*x^6) )); // _G. C. Greubel_, May 13 2019 %o A163454 (Sage) ((1+x)*(1-x^5)/(1-19*x+189*x^5-171*x^6)).series(x, 20).coefficients(x, sparse=False) # _G. C. Greubel_, May 13 2019 %K A163454 nonn %O A163454 0,2 %A A163454 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009