This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163510 #34 Jul 17 2023 13:18:40 %S A163510 0,1,0,0,2,0,1,1,0,0,0,0,3,0,2,1,1,0,0,1,2,0,0,1,0,1,0,0,0,0,0,0,4,0, %T A163510 3,1,2,0,0,2,2,1,0,1,1,1,0,1,0,0,0,1,3,0,0,2,0,1,1,0,0,0,1,0,2,0,0,0, %U A163510 1,0,0,1,0,0,0,0,0,0,0,0,5,0,4,1,3,0,0,3,2,2,0,1,2,1,0,2,0,0,0,2,3,1,0,2,1,1,1,1,0,0,1,1,2,0,1,0,1,0,1,1,0,0,1 %N A163510 Irregular table read by rows: Write n in binary. For each 1, the m-th term of row n is the number of 0's between the m-th 1, reading right to left, and the (m-1)th 1 (or the right side of the number if m-1 = 0). %C A163510 Row n contains exactly A000120(n) terms, for each n. %C A163510 All odd-numbered rows begin with 0. All even-numbered rows begin with a positive integer. %C A163510 Can be used to compute the permutation A163511. %H A163510 Antti Karttunen, <a href="/A163510/b163510.txt">Table of n, a(n) for n = 1..11265</a> %F A163510 a(n) = A227186(A006068(A100922(n-1)), A243067(n)) - 1. - _Antti Karttunen_, Jun 19 2014 %e A163510 Table begins as: %e A163510 Row n in Terms on %e A163510 n binary that row %e A163510 1 1 0; (the distance of 1-bit from the right edge is zero) %e A163510 2 10 1; (the distance of 1-bit from the right edge is one) %e A163510 3 11 0,0; %e A163510 4 100 2; %e A163510 5 101 0,1; (the least significant 1-bit is zero steps away from the right edge, and there is one zero between those two 1-bits) %e A163510 6 110 1,0; %e A163510 7 111 0,0,0; %e A163510 8 1000 3; %e A163510 9 1001 0,2; %e A163510 10 1010 1,1; %e A163510 11 1011 0,0,1; %e A163510 12 1100 2,0; %e A163510 13 1101 0,1,0; %e A163510 14 1110 1,0,0; %e A163510 15 1111 0,0,0,0; %e A163510 16 10000 4; %t A163510 Table[Reverse@ Map[Ceiling[(Length@ # - 1)/2] &, DeleteCases[Split@ Join[Riffle[IntegerDigits[n, 2], 0], {0}], {k__} /; k == 1]], {n, 46}] // Flatten (* _Michael De Vlieger_, Jul 25 2016 *) %o A163510 (Scheme) (define (A163510 n) (- (A227186bi (A006068 (A100922 (- n 1))) (A243067 n)) 1)) %o A163510 ;; See A227186 for A227186bi. - _Antti Karttunen_, Jun 19 2014 %o A163510 (Python) %o A163510 from itertools import count, islice %o A163510 def A163510_gen(): # generator of terms %o A163510 for n in count(1): %o A163510 k = n %o A163510 while k: %o A163510 yield (s:=(~k&k-1).bit_length()) %o A163510 k >>= s+1 %o A163510 A163510_list = list(islice(A163510_gen(),30)) # _Chai Wah Wu_, Jul 17 2023 %Y A163510 Cf. A000120, A006068, A100922, A227186, A243067, A163511, A227736. %Y A163510 Equals A228351-1, termwise. %K A163510 base,nonn,tabf %O A163510 1,5 %A A163510 _Leroy Quet_, Jul 29 2009 %E A163510 Additional terms computed and Example section added by _Antti Karttunen_, Jun 19 2014