This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163569 #21 Apr 22 2025 03:59:46 %S A163569 360,504,540,600,756,792,936,1176,1188,1224,1350,1368,1400,1404,1500, %T A163569 1656,1836,1960,2052,2088,2200,2232,2250,2484,2600,2646,2664,2904, %U A163569 2952,3096,3132,3348,3384,3400,3500,3800,3816,3996,4056,4116,4248,4312,4392 %N A163569 Numbers of the form p^3*q^2*r where p, q and r are three distinct primes. %C A163569 There is no constraint on which of the three primes is the largest or smallest. %H A163569 T. D. Noe, <a href="/A163569/b163569.txt">Table of n, a(n) for n = 1..1000</a> %H A163569 <a href="/index/Pri#prime_signature">Index to sequences related to prime signature</a> %e A163569 360=2^3*3^2*5. 504=2^3*3^2*7. 1188=2^2*3^3*11. %t A163569 f[n_]:=Sort[Last/@FactorInteger[n]]=={1,2,3}; Select[Range[5000], f] %o A163569 (PARI) list(lim)=my(v=List(),t1,t2);forprime(p=2, (lim\12)^(1/3), t1=p^3;forprime(q=2, sqrt(lim\t1), if(p==q, next);t2=t1*q^2;forprime(r=2, lim\t2, if(p==r||q==r, next);listput(v,t2*r)))); vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Jul 20 2011 %o A163569 (Python) %o A163569 from math import isqrt %o A163569 from sympy import primepi, primerange, integer_nthroot %o A163569 def A163569(n): %o A163569 def bisection(f,kmin=0,kmax=1): %o A163569 while f(kmax) > kmax: kmax <<= 1 %o A163569 kmin = kmax >> 1 %o A163569 while kmax-kmin > 1: %o A163569 kmid = kmax+kmin>>1 %o A163569 if f(kmid) <= kmid: %o A163569 kmax = kmid %o A163569 else: %o A163569 kmin = kmid %o A163569 return kmax %o A163569 def f(x): return n+x-sum(primepi(x//(p**3*q**2)) for p in primerange(integer_nthroot(x,3)[0]+1) for q in primerange(isqrt(x//p**3)+1))+sum(primepi(integer_nthroot(x//p**3,3)[0]) for p in primerange(integer_nthroot(x,3)[0]+1))+sum(primepi(isqrt(x//p**4)) for p in primerange(integer_nthroot(x,4)[0]+1))+sum(primepi(x//p**5) for p in primerange(integer_nthroot(x,5)[0]+1))-(primepi(integer_nthroot(x,6)[0])<<1) %o A163569 return bisection(f,n,n) # _Chai Wah Wu_, Mar 27 2025 %Y A163569 Subsequence of A137487. - _R. J. Mathar_, Aug 01 2009 %K A163569 nonn %O A163569 1,1 %A A163569 _Vladimir Joseph Stephan Orlovsky_, Jul 31 2009