This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163573 #33 Oct 07 2024 03:23:08 %S A163573 12721,16921,19441,24481,49681,61561,104161,229321,255361,259681, %T A163573 266401,291721,298201,311041,331921,419401,423481,436801,446881, %U A163573 471241,525241,532801,539401,581521,600601,663601,704161,709921,783721,867001,904801 %N A163573 Primes p such that (p+1)/2, (p+2)/3 and (p+3)/4 are also primes. %C A163573 Are all terms == 1 (mod 10)? %C A163573 Subsequence of A005383, of A091180 and of A036570. - _R. J. Mathar_, Aug 01 2009 %C A163573 Since (p+2)/3 and (p+3)/4 must be integer, the Chinese remainder theorem shows that all terms are == 1 (mod 12). - _R. J. Mathar_, Aug 01 2009 %C A163573 All terms are of the form 120k+1: a(n)=120*A163625(n)+1. - _Zak Seidov_, Aug 01 2009 %C A163573 Each term is congruent to 1 mod 120, so the last digits are always '1': For all four values to be integers it must be that p = 1 (mod 12). As p is prime, it must be that p = 1, 13, 37, 49, 61, 73, 97, or 109 (mod 120). In all but the first case either (p+3)/4 is even or one of the three expressions gives a value divisible by 5 (or both, and possibly the same expression). - _Rick L. Shepherd_, Aug 01 2009 %C A163573 {6*a(n)}_{n >= 1} is a subsequence of A050498. Proof: with p = a(n) the arithmetic progression with four terms of difference 6 and constant value of Euler's phi, namely 2*(p-1), is 6*(p, 2*(p+1)/2, 3*(p+2)/3, 4*(p+3)/4). Use phi(n, prime) = phi(n)*(prime-1) if gcd(n, prime) = 1. Here n = 6, 12, 18, 24 and prime > 3 for p >= a(1). Thanks to _Hugo Pfoertner_ for a link to the present sequence in connection with A339883. - _Wolfdieter Lang_, Jan 11 2021 %H A163573 Vincenzo Librandi and Chai Wah Wu, <a href="/A163573/b163573.txt">Table of n, a(n) for n = 1..10001</a> (First 1000 terms from Vincenzo Librandi) %t A163573 lst={};Do[p=Prime[n];If[PrimeQ[(p+1)/2]&&PrimeQ[(p+2)/3]&&PrimeQ[(p+3)/ 4],AppendTo[lst,p]],{n,2*9!}];lst %o A163573 (Magma) [p: p in PrimesInInterval(6, 1200000) | IsPrime((p+1) div 2) and IsPrime((p+2) div 3) and IsPrime((p+3) div 4)]; // _Vincenzo Librandi_, Apr 09 2013 %o A163573 (PARI) is(n)=n%120==1 && isprime(n) && isprime(n\2+1) && isprime(n\3+1) && isprime(n\4+1) \\ _Charles R Greathouse IV_, Nov 30 2016 %o A163573 (Python) %o A163573 from sympy import prime, isprime %o A163573 A163573_list = [4*q-3 for q in (prime(i) for i in range(1,10000)) if isprime(4*q-3) and isprime(2*q-1) and (not (4*q-1) % 3) and isprime((4*q-1)//3)] # _Chai Wah Wu_, Nov 30 2016 %Y A163573 Cf. A005383, A091180, A036570, A050498, A163623, A163624, A163625, A278583, A278585, A339883. %K A163573 nonn,easy %O A163573 1,1 %A A163573 _Vladimir Joseph Stephan Orlovsky_, Jul 31 2009 %E A163573 Slightly edited by _R. J. Mathar_, Aug 01 2009