This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163611 #11 Sep 08 2022 08:45:46 %S A163611 5,29,175,1083,6805,43141,274895,1756707,11244485,72040589,461782735, %T A163611 2960893803,18987935125,121778793781,781065429935,5009742042387, %U A163611 32132915535365,206105088378749,1321993826474095,8479521232029723 %N A163611 a(n) = ((5 + 2*sqrt(2))*(5 + sqrt(2))^n + (5 - 2*sqrt(2))*(5 - sqrt(2))^n)/2. %C A163611 Binomial transform of A163610. Fifth binomial transform of A163888. %H A163611 G. C. Greubel, <a href="/A163611/b163611.txt">Table of n, a(n) for n = 0..1000</a> %H A163611 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-23). %F A163611 a(n) = 10*a(n-1) - 23*a(n-2) for n > 1; a(0) = 5, a(1) = 29. %F A163611 G.f.: (5-21*x)/(1-10*x+23*x^2). %F A163611 E.g.f.: exp(5*x)*( 5*cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - _G. C. Greubel_, Jul 29 2017 %t A163611 LinearRecurrence[{10, -23}, {5, 29}, 50] (* _G. C. Greubel_, Jul 29 2017 *) %o A163611 (Magma) Z<x>:= PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((5+2*r)*(5+r)^n+(5-2*r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Aug 06 2009 %o A163611 (PARI) x='x+O('x^50); Vec((5-21*x)/(1-10*x+23*x^2)) \\ _G. C. Greubel_, Jul 29 2017 %Y A163611 Cf. A163610, A163888. %K A163611 nonn %O A163611 0,1 %A A163611 Al Hakanson (hawkuu(AT)gmail.com), Aug 01 2009 %E A163611 Edited and extended beyond a(5) by _Klaus Brockhaus_, Aug 06 2009