cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163622 Composite numbers such that the sum of its smallest digit and the largest digit is a prime.

This page as a plain text file.
%I A163622 #14 Dec 14 2021 05:42:47
%S A163622 12,14,16,20,21,25,30,32,34,38,49,50,52,56,58,65,70,74,76,85,92,94,98,
%T A163622 102,105,112,114,116,120,121,122,124,126,130,134,136,141,142,143,144,
%U A163622 146,150,156,161,162,164,165,166,170,200,201,202,203,205,207,210
%N A163622 Composite numbers such that the sum of its smallest digit and the largest digit is a prime.
%C A163622 Numbers like 111 are ignored, at least two different digits are required.
%H A163622 G. C. Greubel, <a href="/A163622/b163622.txt">Table of n, a(n) for n = 1..5000</a>
%e A163622 166 is a composite number whose sum of smallest digit and the largest digit is a prime.
%t A163622 comprQ[n_]:=Module[{idn=IntegerDigits[n]},CompositeQ[n]&&Length[Union[ idn]]>1&&PrimeQ[Min[idn]+Max[idn]]]; Select[Range[250],comprQ] (* _Harvey P. Dale_, Mar 29 2015 *)
%o A163622 (Python)
%o A163622 from sympy import isprime
%o A163622 def ok(n):
%o A163622     digits = list(map(int, str(n)))
%o A163622     repdigit, smlg = len(set(digits)) == 1, min(digits) + max(digits)
%o A163622     return not repdigit and isprime(smlg) and not isprime(n)
%o A163622 print([k for k in range(211) if ok(k)]) # _Michael S. Branicky_, Dec 14 2021
%Y A163622 Cf. A002808, A162658, A141642, A221699.
%K A163622 nonn,base
%O A163622 1,1
%A A163622 _Parthasarathy Nambi_, Aug 01 2009
%E A163622 Corrected and extended by _Harvey P. Dale_, Mar 29 2015