This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163622 #14 Dec 14 2021 05:42:47 %S A163622 12,14,16,20,21,25,30,32,34,38,49,50,52,56,58,65,70,74,76,85,92,94,98, %T A163622 102,105,112,114,116,120,121,122,124,126,130,134,136,141,142,143,144, %U A163622 146,150,156,161,162,164,165,166,170,200,201,202,203,205,207,210 %N A163622 Composite numbers such that the sum of its smallest digit and the largest digit is a prime. %C A163622 Numbers like 111 are ignored, at least two different digits are required. %H A163622 G. C. Greubel, <a href="/A163622/b163622.txt">Table of n, a(n) for n = 1..5000</a> %e A163622 166 is a composite number whose sum of smallest digit and the largest digit is a prime. %t A163622 comprQ[n_]:=Module[{idn=IntegerDigits[n]},CompositeQ[n]&&Length[Union[ idn]]>1&&PrimeQ[Min[idn]+Max[idn]]]; Select[Range[250],comprQ] (* _Harvey P. Dale_, Mar 29 2015 *) %o A163622 (Python) %o A163622 from sympy import isprime %o A163622 def ok(n): %o A163622 digits = list(map(int, str(n))) %o A163622 repdigit, smlg = len(set(digits)) == 1, min(digits) + max(digits) %o A163622 return not repdigit and isprime(smlg) and not isprime(n) %o A163622 print([k for k in range(211) if ok(k)]) # _Michael S. Branicky_, Dec 14 2021 %Y A163622 Cf. A002808, A162658, A141642, A221699. %K A163622 nonn,base %O A163622 1,1 %A A163622 _Parthasarathy Nambi_, Aug 01 2009 %E A163622 Corrected and extended by _Harvey P. Dale_, Mar 29 2015