This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163635 #30 Sep 08 2022 08:45:46 %S A163635 23,41,59,131,311,329,581,689,941,1049,1391,1931,2471,2579,2651,3281, %T A163635 3839,3911,4289,4451,4469,4829,5621,5999,6251,6719,6809,7979,8069, %U A163635 9761,10391,10589,11021,11759,12011,12389,13559,13919,14369,14801 %N A163635 a(n) = 3*A022004(n) + 8. %C A163635 Sum of the members of the n-th prime triple (p, p+2, p+6). %C A163635 All terms are congruent to 5 (mod 18). See A242215. - _Robert Bilinski_, Sep 24 2019 %H A163635 Vincenzo Librandi, <a href="/A163635/b163635.txt">Table of n, a(n) for n = 1..1000</a> %F A163635 a(n) = A022004(n) + (A022004(n)+2) + (A022004(n)+6); %F A163635 a(n) = A022004(n) + A073648(n) + A098412(n). %e A163635 23 is in the sequence because 23 = 5+7+11 = 3*5+8. %e A163635 41 is in the sequence because 41 = 11+13+17 = 3*11+8. %t A163635 8 + 3*Select[Prime[Range[1000]], PrimeQ[# + 2] && PrimeQ[# + 6] &] (* _Vincenzo Librandi_, Jan 04 2014 *) %o A163635 (Magma) [(3*p+8): p in PrimesUpTo(1000)| IsPrime(p+6) and IsPrime(p+2)]; // _Vincenzo Librandi_, Jan 06 2018 %o A163635 (PARI) is(n)=n%18==5 && isprime(n\3-2) && isprime(n\3) && isprime(n\3+4) \\ _Charles R Greathouse IV_, Jan 06 2018 %Y A163635 Cf. A022004, A073648, A098412. %Y A163635 Cf. A242215. %K A163635 nonn,easy %O A163635 1,1 %A A163635 _Vincenzo Librandi_, Aug 02 2009 %E A163635 Notation normalized by _R. J. Mathar_, Aug 07 2009