cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163640 The radical of the swinging factorial A056040 for odd indices.

This page as a plain text file.
%I A163640 #14 Aug 22 2025 04:31:52
%S A163640 1,6,30,70,210,462,6006,4290,72930,461890,1939938,4056234,6760390,
%T A163640 1560090,6463230,200360130,2203961430,907513530,33578000610,
%U A163640 22974421470,941951280270,5786272150230,526024740930,1074920122770,7524440859390,25583098921926,104300326374006,1912172650190110
%N A163640 The radical of the swinging factorial A056040 for odd indices.
%C A163640 Let $ denote the swinging factorial. a(n) is the radical of (2*n+1)$ which is the product of the prime numbers dividing (2*n+1)$. It is the largest squarefree divisor of (2*n+1)$, and so also described as the squarefree kernel of (2*n+1)$.
%H A163640 Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011.
%H A163640 Peter Luschny, <a href="http://www.luschny.de/math/swing/SwingingFactorial.html">Swinging Factorial</a>.
%e A163640 (2*5+1)$ = 2772 = 2^2*3^2*7*11. Therefore a(5) = 2*3*7*11 = 462.
%p A163640 a := proc(n) local p; mul(p,p=numtheory[factorset]((2*n+1)!/iquo(2*n+1,2)!^2)) end:
%t A163640 sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Times @@ FactorInteger[sf[2*n + 1]][[All, 1]]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Jul 30 2013 *)
%Y A163640 A056040(n) = n$, A163641(n) = rad(n$), A080397(n) = rad((2n)$).
%K A163640 nonn
%O A163640 0,2
%A A163640 _Peter Luschny_, Aug 02 2009
%E A163640 More terms from _Michel Marcus_, Aug 22 2025