This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163675 #25 Dec 17 2019 05:28:29 %S A163675 0,13,37,78,142,235,363,532,748,1017,1345,1738,2202,2743,3367,4080, %T A163675 4888,5797,6813,7942,9190,10563,12067,13708,15492,17425,19513,21762, %U A163675 24178,26767,29535,32488,35632,38973,42517,46270,50238,54427,58843,63492,68380 %N A163675 a(n) = n*(2*n^2 + 5*n + 19)/2. %H A163675 Vincenzo Librandi, <a href="/A163675/b163675.txt">Table of n, a(n) for n = 0..1000</a> %H A163675 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A163675 Row sums from A163674: a(n) = Sum_{m=1..n} (2*m*n + m + n + 9). %F A163675 a(n) = A163673(n) + 2*n = A162256(n) + 11*n. %F A163675 G.f.: x*(13 - 15*x + 8*x^2)/(x-1)^4. %F A163675 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). %F A163675 E.g.f.: (1/2)*x*(26 + 11*x + 2*x^2)*exp(x). - _G. C. Greubel_, Aug 02 2017 %t A163675 CoefficientList[Series[x*(13-15*x+8*x^2)/(x-1)^4, {x, 0, 40}], x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {0, 13, 37, 78}, 50] (* _Vincenzo Librandi_, Mar 06 2012 *) %o A163675 (PARI) x='x+O('x^50); concat([0], Vec(x*(13 -15*x +8*x^2)/(x-1)^4)) \\ _G. C. Greubel_, Aug 02 2017 %Y A163675 Cf. A163674, A162256, A163673. %K A163675 nonn,easy %O A163675 0,2 %A A163675 _Vincenzo Librandi_, Aug 03 2009 %E A163675 Edited and a(31) corrected by _R. J. Mathar_, Aug 05 2009