A163695 Number of n X 2 binary arrays with all 1s connected, a path of 1s from top row to lower right corner, and no 1 having more than two 1s adjacent.
2, 5, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, 2207, 3571, 5778, 9349, 15127, 24476, 39603, 64079, 103682, 167761, 271443, 439204, 710647, 1149851, 1860498, 3010349, 4870847, 7881196, 12752043, 20633239, 33385282, 54018521, 87403803
Offset: 1
Examples
All solutions for n=4: ...0.1...0.1...1.1...1.1...1.0...1.1...1.0...1.1...1.0...1.0...0.1 ...0.1...0.1...0.1...0.1...1.0...1.0...1.0...1.0...1.1...1.1...1.1 ...0.1...0.1...0.1...0.1...1.1...1.1...1.0...1.0...0.1...0.1...1.0 ...0.1...1.1...0.1...1.1...0.1...0.1...1.1...1.1...0.1...1.1...1.1
Links
- R. H. Hardin, Table of n, a(n) for n=1..100
- Index entries for linear recurrences with constant coefficients, signature (1,1).
Crossrefs
Programs
-
PARI
Vec(x*(2 - x)*(1 + x)^2 / (1 - x - x^2) + O(x^60)) \\ Colin Barker, Feb 20 2018
Formula
a(n) = a(n-1) + a(n-2) for n>=5.
[The Transfer Matrix Method provides this recurrence. - R. J. Mathar, Aug 02 2017]
From Colin Barker, Feb 20 2018: (Start)
G.f.: x*(2 - x)*(1 + x)^2 / (1 - x - x^2).
a(n) = (2^(-1-n)*((1-sqrt(5))^n*(-5+sqrt(5)) + (1+sqrt(5))^n*(5+sqrt(5)))) / sqrt(5) for n>2.
(End)