A163704 Number of n X 2 binary arrays with all 1s connected, a path of 1s from left column to lower right corner, and no 1 having more than two 1s adjacent.
1, 5, 11, 21, 38, 66, 112, 187, 309, 507, 828, 1348, 2190, 3553, 5759, 9329, 15106, 24454, 39580, 64055, 103657, 167735, 271416, 439176, 710618, 1149821, 1860467, 3010317, 4870814, 7881162, 12752008, 20633203, 33385245, 54018483, 87403764
Offset: 1
Keywords
Examples
All solutions for n=3: 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1 1 1 1 0 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..100
Crossrefs
Cf. A023548. - R. J. Mathar, Aug 06 2009
Formula
Empirical: a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) for n >= 6.
Conjectures from Colin Barker, Mar 25 2018: (Start)
G.f.: x*(1 + 2*x - 2*x^2 - x^3 + x^4) / ((1 - x)^2*(1 - x - x^2)).
a(n) = -4 + (2^(-n)*((1-sqrt(5))^n*(-5+2*sqrt(5)) + (1+sqrt(5))^n*(5+2*sqrt(5)))) / sqrt(5) - n for n>1.
(End)