This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163745 #16 Sep 08 2022 08:45:47 %S A163745 1,43,1806,75852,3185784,133802025,5619647124,236023587219, %T A163745 9912923799660,416339991317124,17486161688852682,734413837213650321, %U A163745 30845173108213815708,1295488532304021561975,54410151353124129064362 %N A163745 Number of reduced words of length n in Coxeter group on 43 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I. %C A163745 The initial terms coincide with those of A170762, although the two sequences are eventually different. %C A163745 Computed with MAGMA using commands similar to those used to compute A154638. %H A163745 G. C. Greubel, <a href="/A163745/b163745.txt">Table of n, a(n) for n = 0..614</a> %H A163745 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (41, 41, 41, 41, -861). %F A163745 G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(861*t^5 - 41*t^4 - 41*t^3 - 41*t^2 - 41*t + 1). %F A163745 a(n) = 41*a(n-1)+41*a(n-2)+41*a(n-3)+41*a(n-4)-861*a(n-5). - _Wesley Ivan Hurt_, May 11 2021 %p A163745 seq(coeff(series((1+t)*(1-t^5)/(1-42*t+902*t^5-861*t^6), t, n+1), t, n), n = 0 .. 20); # _G. C. Greubel_, Aug 09 2019 %t A163745 CoefficientList[Series[(1+t)*(1-t^5)/(1-42*t+902*t^5-861*t^6), {t, 0, 20}], t] (* _G. C. Greubel_, Aug 02 2017 *) %t A163745 coxG[{5, 865, -41}] (* The coxG program is at A169452 *) (* _G. C. Greubel_, Aug 09 2019 *) %o A163745 (PARI) my(t='t+O('t^20)); Vec((1+t)*(1-t^5)/(1-42*t+902*t^5-861*t^6)) \\ _G. C. Greubel_, Aug 02 2017 %o A163745 (Magma) R<t>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^5)/(1-42*t+902*t^5-861*t^6) )); // _G. C. Greubel_, Aug 09 2019 %o A163745 (Sage) %o A163745 def A163745_list(prec): %o A163745 P.<t> = PowerSeriesRing(ZZ, prec) %o A163745 return P((1+t)*(1-t^5)/(1-42*t+902*t^5-861*t^6)).list() %o A163745 A163745_list(20) # _G. C. Greubel_, Aug 09 2019 %K A163745 nonn %O A163745 0,2 %A A163745 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009