This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163761 #52 Feb 22 2023 01:48:57 %S A163761 0,20,60,120,200,300,420,560,720,900,1100,1320,1560,1820,2100,2400, %T A163761 2720,3060,3420,3800,4200,4620,5060,5520,6000,6500,7020,7560,8120, %U A163761 8700,9300,9920,10560,11220,11900,12600,13320,14060,14820,15600,16400,17220,18060,18920 %N A163761 a(n) = 10*n*(n+1). %C A163761 20 times the n-th triangular number. %C A163761 a(n) is the number of one-sided n-step prudent walks, from (0,0) to (3,3), for n-6 is even. - _Shanzhen Gao_, Apr 26 2011 %C A163761 Numbers k such that 10*k + 25 is a square. - _Bruno Berselli_, May 14 2018 %H A163761 Vincenzo Librandi, <a href="/A163761/b163761.txt">Table of n, a(n) for n = 0..875</a> %H A163761 John Elias, <a href="/A163761/a163761.png">Illustration of Initial Terms: Correlation of 10k+25 is a square</a>. %H A163761 Shanzhen Gao and Keh-Hsun Chen, <a href="http://worldcomp-proceedings.com/proc/p2014/FCS2696.pdf">Tackling Sequences From Prudent Self-Avoiding Walks</a>, FCS'14, The 2014 International Conference on Foundations of Computer Science. %H A163761 Shanzhen Gao and H. Niederhausen, <a href="http://math.fau.edu/Niederhausen/HTML/Papers/Sequences%20Arising%20From%20Prudent%20Self-Avoiding%20Walks-February%2001-2010.pdf">Sequences Arising From Prudent Self-Avoiding Walks</a>, (submitted to INTEGERS: The Electronic Journal of Combinatorial Number Theory). %H A163761 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A163761 a(n) = 20*A000217(n) = 10*A002378(n). %F A163761 G.f.: 20*x/(1-x)^3. %F A163761 E.g.f.: 10*x*(x+2)*exp(x). - _G. C. Greubel_, Aug 03 2017 %F A163761 From _Amiram Eldar_, Feb 22 2023: (Start) %F A163761 Sum_{n>=1} 1/a(n) = 1/10. %F A163761 Sum_{n>=1} (-1)^(n+1)/a(n) = (2*log(2) - 1)/10. %F A163761 Product_{n>=1} (1 - 1/a(n)) = -(10/Pi)*cos(sqrt(7/5)*Pi/2). %F A163761 Product_{n>=1} (1 + 1/a(n)) = (10/Pi)*cos(sqrt(3/5)*Pi/2). (End) %t A163761 LinearRecurrence[{3,-3,1},{0,20,60}, 50] (* or *) Table[10*n*(n+1), {n,0,50}] (* _G. C. Greubel_, Aug 03 2017 *) %o A163761 (Magma) [10*n*(n+1): n in [0..50]]; %o A163761 (PARI) a(n)=10*n*(n+1) \\ _Charles R Greathouse IV_, Jun 17 2017 %Y A163761 Cf. A000217, A002378. %K A163761 nonn,easy %O A163761 0,2 %A A163761 _Vincenzo Librandi_, Aug 03 2009 %E A163761 Entries checked by _R. J. Mathar_, Aug 06 2009