This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163767 #24 Jul 05 2024 09:53:53 %S A163767 1,2,3,10,5,36,7,120,45,100,11,936,13,196,225,3876,17,3078,19,4200, %T A163767 441,484,23,62400,325,676,3654,11368,29,27000,31,376992,1089,1156, %U A163767 1225,443556,37,1444,1521,459200,41,74088,43,43560,46575,2116,47,11995200,1225 %N A163767 a(n) = tau_{n}(n) = number of ordered n-factorizations of n. %C A163767 Also the number of length n - 1 chains of divisors of n. - _Gus Wiseman_, May 07 2021 %H A163767 Alois P. Heinz, <a href="/A163767/b163767.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from Enrique Pérez Herrero) %F A163767 a(p) = p for prime p. %F A163767 a(n) = n^k when n is the product of k distinct primes (conjecture). %F A163767 a(n) = n-th term of the n-th Dirichlet self-convolution of the all 1's sequence. %F A163767 a(2^n) = A060690(n). - _Alois P. Heinz_, Jun 12 2024 %e A163767 Successive Dirichlet self-convolutions of the all 1's sequence begin: %e A163767 (1),1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,... (A000012) %e A163767 1,(2),2,3,2,4,2,4,3,4,2,6,2,4,4,5,... (A000005) %e A163767 1,3,(3),6,3,9,3,10,6,9,3,18,3,9,9,15,... (A007425) %e A163767 1,4,4,(10),4,16,4,20,10,16,4,40,4,16,16,35,... (A007426) %e A163767 1,5,5,15,(5),25,5,35,15,25,5,75,5,25,25,70,... (A061200) %e A163767 1,6,6,21,6,(36),6,56,21,36,6,126,6,36,36,126,... (A034695) %e A163767 1,7,7,28,7,49,(7),84,28,49,7,196,7,49,49,210,... (A111217) %e A163767 1,8,8,36,8,64,8,(120),36,64,8,288,8,64,64,330,... (A111218) %e A163767 1,9,9,45,9,81,9,165,(45),81,9,405,9,81,81,495,... (A111219) %e A163767 1,10,10,55,10,100,10,220,55,(100),10,550,10,100,... (A111220) %e A163767 1,11,11,66,11,121,11,286,66,121,(11),726,11,121,... (A111221) %e A163767 1,12,12,78,12,144,12,364,78,144,12,(936),12,144,... (A111306) %e A163767 ... %e A163767 where the main diagonal forms this sequence. %e A163767 From _Gus Wiseman_, May 07 2021: (Start) %e A163767 The a(1) = 1 through a(5) = 5 chains of divisors: %e A163767 () (1) (1/1) (1/1/1) (1/1/1/1) %e A163767 (2) (3/1) (2/1/1) (5/1/1/1) %e A163767 (3/3) (2/2/1) (5/5/1/1) %e A163767 (2/2/2) (5/5/5/1) %e A163767 (4/1/1) (5/5/5/5) %e A163767 (4/2/1) %e A163767 (4/2/2) %e A163767 (4/4/1) %e A163767 (4/4/2) %e A163767 (4/4/4) %e A163767 (End) %t A163767 Table[Times@@(Binomial[#+n-1,n-1]&/@FactorInteger[n][[All,2]]),{n,1,50}] (* _Enrique Pérez Herrero_, Dec 25 2013 *) %o A163767 (PARI) {a(n,m=n)=if(n==1,1,if(m==1,1,sumdiv(n,d,a(d,1)*a(n/d,m-1))))} %o A163767 (Python) %o A163767 from math import prod, comb %o A163767 from sympy import factorint %o A163767 def A163767(n): return prod(comb(n+e-1,e) for e in factorint(n).values()) # _Chai Wah Wu_, Jul 05 2024 %Y A163767 Main diagonal of A077592. %Y A163767 Diagonal n = k + 1 of the array A334997. %Y A163767 The version counting all multisets of divisors (not just chains) is A343935. %Y A163767 A000005 counts divisors. %Y A163767 A001055 counts factorizations (strict: A045778, ordered: A074206). %Y A163767 A001221 counts distinct prime factors. %Y A163767 A001222 counts prime factors with multiplicity. %Y A163767 A067824 counts strict chains of divisors starting with n. %Y A163767 A122651 counts strict chains of divisors summing to n. %Y A163767 A146291 counts divisors of n with k prime factors (with multiplicity). %Y A163767 A167865 counts strict chains of divisors > 1 summing to n. %Y A163767 A253249 counts nonempty strict chains of divisors of n. %Y A163767 A251683/A334996 count strict nonempty length-k divisor chains from n to 1. %Y A163767 A337255 counts strict length-k chains of divisors starting with n. %Y A163767 A339564 counts factorizations with a selected factor. %Y A163767 A343662 counts strict length-k chains of divisors (row sums: A337256). %Y A163767 Cf. A002033, A007425, A008480, A018818, A062319, A066959, A186972, A327527, A337105, A337107, A343658. %Y A163767 Cf. A060690. %K A163767 nonn %O A163767 1,2 %A A163767 _Paul D. Hanna_, Aug 04 2009