cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163768 Distance of Fibonacci(n) to the closest prime which is not Fibonacci(n) itself.

This page as a plain text file.
%I A163768 #13 May 19 2019 04:02:31
%S A163768 2,1,1,1,1,2,1,2,2,3,2,6,5,4,2,3,4,4,5,4,2,3,2,4,13,4,10,11,14,10,23,
%T A163768 4,4,9,10,14,11,6,12,3,2,6,7,12,16,9,24,6,5,20,18,23,14,6,9,12,10,21,
%U A163768 4,30,13,38,4,7,16,12,19,36,22,31,4,32,11,12,60,7,2,6,27,12,62,25,20,6,19,78
%N A163768 Distance of Fibonacci(n) to the closest prime which is not Fibonacci(n) itself.
%C A163768 The closest prime to F(n) -- next closest if F(n) itself is prime -- for n = 0, 1, 2, 3, 4, ...:
%C A163768 2, 2, 2, 3, 2, 3 or 7, 7, 11, 19 or 23, 31 or 37, 53, 83, 139 or 149, 229, 379, 607 or 613.
%H A163768 G. C. Greubel, <a href="/A163768/b163768.txt">Table of n, a(n) for n = 0..1000</a>
%F A163768 For n not in A001605: a(n) = MIN{|A000045(n) - A000040(i)} = A079677(n).
%F A163768 For n in A001605: a(n) = MIN{k such that k > 0 and |A000045(n) - A000040(i)| = k}.
%F A163768 a(n) = A051700(A000045(n)). - _R. J. Mathar_, Aug 06 2009
%e A163768 a(0) = 2 because 2 is the closest prime to F(0) = 0, and 2-0 = 2.
%e A163768 a(1) = 1 because 2 is the closest prime to F(1) = 1, and 2-1 = 1.
%e A163768 a(3) = 1 because 3 is the closest prime to F(3) = 2 other than the prime F(3) = 2 itself, and 3-2 = 1.
%p A163768 A051700 := proc(n) if n < 2 then 2-n; elif n = 2 then 1 ; else min( nextprime(n)-n, n-prevprime(n) ); fi; end:
%p A163768 A000045 := proc(n) combinat[fibonacci](n) ; end:
%p A163768 A163768 := proc(n) A051700(A000045(n)) ; end: seq(A163768(n), n=0..100) ; # _R. J. Mathar_, Aug 06 2009
%t A163768 g[n_]:=Module[{fn=Fibonacci[n],a,b},a=NextPrime[fn,-1];b=NextPrime[fn];Min[Abs[fn-a],Abs[b-fn]]]; Table[g[i],{i,0,100}] (* _Harvey P. Dale_, Jan 15 2011 *)
%Y A163768 Cf. A000040, A000045, A001605, A005478, A023186.
%K A163768 easy,nonn
%O A163768 0,1
%A A163768 _Jonathan Vos Post_, Aug 04 2009
%E A163768 More terms from _R. J. Mathar_, Aug 06 2009, reformatted Aug 29 2009