This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163770 #29 Aug 22 2025 04:25:41 %S A163770 1,0,1,1,1,2,2,3,4,6,-9,-7,-4,0,6,44,35,28,24,24,30,-165,-121,-86,-58, %T A163770 -34,-10,20,594,429,308,222,164,130,120,140,-2037,-1443,-1014,-706, %U A163770 -484,-320,-190,-70,70,6824,4787,3344,2330,1624,1140,820,630,560,630 %N A163770 Triangle read by rows interpolating the swinging subfactorial (A163650) with the swinging factorial (A056040). %C A163770 An analog to the derangement triangle (A068106). %H A163770 G. C. Greubel, <a href="/A163770/b163770.txt">Table of n, a(n) for the first 50 rows, flattened</a> %H A163770 Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011. %H A163770 Peter Luschny, <a href="http://www.luschny.de/math/swing/SwingingFactorial.html">Swinging Factorial</a>. %H A163770 M. Z. Spivey and L. L. Steil, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Spivey/spivey7.html">The k-Binomial Transforms and the Hankel Transform</a>, J. Integ. Seqs. Vol. 9 (2006), #06.1.1. %F A163770 T(n,k) = Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*i$ where i$ denotes the swinging factorial of i (A056040). %e A163770 1 %e A163770 0, 1 %e A163770 1, 1, 2 %e A163770 2, 3, 4, 6 %e A163770 -9, -7, -4, 0, 6 %e A163770 44, 35, 28, 24, 24, 30 %e A163770 -165, -121, -86, -58, -34, -10, 20 %p A163770 DiffTria := proc(f,n,display) local m,A,j,i,T; T:=f(0); %p A163770 for m from 0 by 1 to n-1 do A[m] := f(m); %p A163770 for j from m by -1 to 1 do A[j-1] := A[j-1] - A[j] od; %p A163770 for i from 0 to m do T := T,(-1)^(m-i)*A[i] od; %p A163770 if display then print(seq(T[i],i=nops([T])-m..nops([T]))) fi; %p A163770 od; subsop(1=NULL,[T]) end: %p A163770 swing := proc(n) option remember; if n = 0 then 1 elif %p A163770 irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end: %p A163770 Computes n rows of the triangle. %p A163770 A163770 := n -> DiffTria(k->swing(k),n,true); %p A163770 A068106 := n -> DiffTria(k->factorial(k),n,true); %t A163770 sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[(-1)^(n - i)*Binomial[n - k, n - i]*sf[i], {i, k, n}]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 28 2013 *) %Y A163770 Row sums are A163773. %Y A163770 Cf. A056040, A163650, A163771, A163772, A068106. %K A163770 sign,tabl,changed %O A163770 0,6 %A A163770 _Peter Luschny_, Aug 05 2009