A163771 Triangle interpolating the swinging factorial (A056040) restricted to even indices with its binomial inverse. Same as interpolating the central trinomial coefficients (A002426) with the central binomial coefficients (A000984).
1, 1, 2, 3, 4, 6, 7, 10, 14, 20, 19, 26, 36, 50, 70, 51, 70, 96, 132, 182, 252, 141, 192, 262, 358, 490, 672, 924, 393, 534, 726, 988, 1346, 1836, 2508, 3432, 1107, 1500, 2034, 2760, 3748, 5094, 6930, 9438, 12870
Offset: 0
Examples
Triangle begins 1; 1, 2; 3, 4, 6; 7, 10, 14, 20; 19, 26, 36, 50, 70; 51, 70, 96, 132, 182, 252; 141, 192, 262, 358, 490, 672, 924; From _M. F. Hasler_, Nov 15 2019: (Start) The square array having central binomial coefficients A000984 in column 0 and higher differences in subsequent columns (col. 1 = A051924) starts: 1 1 3 7 19 51 ... 2 4 10 26 70 192 ... 6 14 36 96 262 726 ... 20 50 132 358 988 2760 ... 70 182 490 1346 3748 10540 ... 252 672 1836 5094 14288 40404 ... (...) Read by falling antidiagonals this yields the same sequence. (End)
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
- Peter Luschny, Swinging Factorial.
- M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
Programs
-
Maple
For the functions 'DiffTria' and 'swing' see A163770. Computes n rows of the triangle. a := n -> DiffTria(k->swing(2*k),n,true);
-
Mathematica
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[(-1)^(n - i)*Binomial[n - k, n - i]*sf[2*i], {i, k, n}]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)
Comments