cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163772 Triangle interpolating the swinging factorial (A056040) restricted to odd indices with its binomial inverse. Triangle read by rows. For n >= 0, k >= 0.

This page as a plain text file.
%I A163772 #28 Aug 22 2025 04:32:29
%S A163772 1,5,6,19,24,30,67,86,110,140,227,294,380,490,630,751,978,1272,1652,
%T A163772 2142,2772,2445,3196,4174,5446,7098,9240,12012,7869,10314,13510,17684,
%U A163772 23130,30228,39468,51480
%N A163772 Triangle interpolating the swinging factorial (A056040) restricted to odd indices with its binomial inverse. Triangle read by rows. For n >= 0, k >= 0.
%H A163772 G. C. Greubel, <a href="/A163772/b163772.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%H A163772 Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011.
%H A163772 Peter Luschny, <a href="http://www.luschny.de/math/swing/SwingingFactorial.html">Swinging Factorial</a>.
%H A163772 M. Z. Spivey and L. L. Steil, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Spivey/spivey7.html">The k-Binomial Transforms and the Hankel Transform</a>, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
%F A163772 T(n,k) = Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*(2i+1)$  where i$ denotes the swinging factorial of i (A056040).
%e A163772 Triangle begins:
%e A163772      1;
%e A163772      5,    6;
%e A163772     19,   24,   30;
%e A163772     67,   86,  110,  140;
%e A163772    227,  294,  380,  490,  630;
%e A163772    751,  978, 1272, 1652, 2142, 2772;
%e A163772   2445, 3196, 4174, 5446, 7098, 9240, 12012;
%p A163772 For the functions 'DiffTria' and 'swing' see A163770. Computes n rows of the triangle.
%p A163772 a := n -> DiffTria(k->swing(2*k+1),n,true);
%t A163772 sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[ (-1)^(n-i)*Binomial[n-k, n-i]*sf[2*i+1], {i, k, n}]; Table[t[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 28 2013 *)
%Y A163772 Row sums are A163775. Cf. A056040, A163650, A163771, A163772, A002426, A000984.
%K A163772 nonn,tabl,changed
%O A163772 0,2
%A A163772 _Peter Luschny_, Aug 05 2009