This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163810 #16 Apr 18 2022 10:35:07 %S A163810 1,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0,1, %T A163810 1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0, %U A163810 1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1,0,1,1,0,-1,-1 %N A163810 Expansion of (1 - x) * (1 - x^2) * (1 - x^3) / (1 - x^6) in powers of x. %H A163810 G. C. Greubel, <a href="/A163810/b163810.txt">Table of n, a(n) for n = 0..1000</a> %H A163810 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1). %F A163810 Euler transform of length 6 sequence [ -1, -1, -1, 0, 0, 1]. %F A163810 G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = 2 * u * (1 - u) * (2 - v) - (v - u^2). %F A163810 a(3*n) = 0 unless n=0. a(6*n + 1) = a(6*n + 2) = -1, a(6*n + 4) = a(6*n + 5) = a(0) = 1. %F A163810 a(-n) = -a(n) unless n=0. a(n+3) = -a(n) unless n=0 or n=-3. %F A163810 G.f.: (1 - x)^2 / (1 - x + x^2). %e A163810 G.f. = 1 - x - x^2 + x^4 + x^5 - x^7 - x^8 + x^10 + x^11 - x^13 - x^14 + ... %t A163810 Join[{1},LinearRecurrence[{1, -1},{-1, -1},104]] (* _Ray Chandler_, Sep 15 2015 *) %o A163810 (PARI) {a(n) = (n==0) + [0, -1, -1, 0, 1, 1][n%6 + 1]}; %o A163810 (PARI) {a(n) = (n==0) + (-1)^n * kronecker(-3, n)}; %Y A163810 A163806(n) = -a(n) unless n=0. A106510(n) = (-1)^n * a(n). %Y A163810 Convolution inverse of A028310. Series reversion of A109081. %K A163810 sign,easy %O A163810 0,1 %A A163810 _Michael Somos_, Nov 07 2007