This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163837 #27 Feb 05 2025 02:14:01 %S A163837 1,50,2450,120050,5882450,288238825,14123642400,692055537600, %T A163837 33910577282400,1661611227897600,81418604280421800, %U A163837 3989494661371228800,195484407940615651200,9578695296400885468800,469354075590339325411200 %N A163837 Number of reduced words of length n in Coxeter group on 50 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I. %C A163837 The initial terms coincide with those of A170769, although the two sequences are eventually different. %C A163837 Computed with MAGMA using commands similar to those used to compute A154638. %H A163837 G. C. Greubel, <a href="/A163837/b163837.txt">Table of n, a(n) for n = 0..590</a> %H A163837 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (48,48,48,48,-1176). %F A163837 G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^5 - 48*t^4 - 48*t^3 - 48*t^2 - 48*t + 1). %F A163837 a(n) = 48*a(n-1)+48*a(n-2)+48*a(n-3)+48*a(n-4)-1176*a(n-5). - _Wesley Ivan Hurt_, May 11 2021 %p A163837 seq(coeff(series((1+t)*(1-t^5)/(1-49*t+1224*t^5-1176*t^6), t, n+1), t, n), n = 0 .. 20); # _G. C. Greubel_, Aug 09 2019 %t A163837 CoefficientList[Series[(1+t)*(1-t^5)/(1-49*t+1224*t^5-1176*t^6), {t, 0, 20}], t] (* _G. C. Greubel_, Aug 05 2017 *) %t A163837 coxG[{5, 1176, -48}] (* The coxG program is at A169452 *) (* _G. C. Greubel_, Aug 10 2019 *) %o A163837 (PARI) my(t='t+O('t^20)); Vec((1+t)*(1-t^5)/(1-49*t+1224*t^5-1176*t^6)) \\ _G. C. Greubel_, Aug 05 2017 %o A163837 (Magma) R<t>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^5)/(1-49*t+1224*t^5-1176*t^6) )); // _G. C. Greubel_, Aug 09 2019 %o A163837 (Sage) %o A163837 def A163748_list(prec): %o A163837 P.<t> = PowerSeriesRing(ZZ, prec) %o A163837 return P((1+t)*(1-t^5)/(1-49*t+1224*t^5-1176*t^6)).list() %o A163837 A163748_list(20) # _G. C. Greubel_, Aug 09 2019 %o A163837 (GAP) a:=[50,2450,120050,5882450,288238825];; for n in [6..20] do a[n]:=48*(a[n-1]+a[n-2]+a[n-3]+a[n-4]) -1176*a[n-5]; od; Concatenation([1], a); # _G. C. Greubel_, Aug 09 2019 %Y A163837 Cf. A154638, A170769. %K A163837 nonn,easy %O A163837 0,2 %A A163837 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009