cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163840 Triangle interpolating the binomial transform of the swinging factorial (A163865) with the swinging factorial (A056040).

This page as a plain text file.
%I A163840 #25 Aug 22 2025 04:25:26
%S A163840 1,2,1,5,3,2,16,11,8,6,47,31,20,12,6,146,99,68,48,36,30,447,301,202,
%T A163840 134,86,50,20,1380,933,632,430,296,210,160,140,4251,2871,1938,1306,
%U A163840 876,580,370,210,70,13102,8851,5980,4042,2736,1860,1280,910,700,630
%N A163840 Triangle interpolating the binomial transform of the swinging factorial (A163865) with the swinging factorial (A056040).
%C A163840 Triangle read by rows.
%C A163840 An analog to the binomial triangle of the factorials (A076571).
%H A163840 G. C. Greubel, <a href="/A163840/b163840.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%H A163840 Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011.
%H A163840 Peter Luschny, <a href="http://www.luschny.de/math/swing/SwingingFactorial.html">Swinging Factorial</a>.
%F A163840 T(n,k) = Sum_{i=k..n} binomial(n-k,n-i)*i$ where i$ denotes the swinging factorial of i (A056040), for n >= 0, k >= 0.
%e A163840 Triangle begins
%e A163840     1;
%e A163840     2,   1;
%e A163840     5,   3,   2;
%e A163840    16,  11,   8,   6;
%e A163840    47,  31,  20,  12,  6;
%e A163840   146,  99,  68,  48, 36, 30;
%e A163840   447, 301, 202, 134, 86, 50, 20;
%p A163840 SumTria := proc(f,n,display) local m,A,j,i,T; T:=f(0);
%p A163840 for m from 0 by 1 to n-1 do A[m] := f(m);
%p A163840 for j from m by -1 to 1 do A[j-1] := A[j-1] + A[j] od;
%p A163840 for i from 0 to m do T := T,A[i] od;
%p A163840 if display then print(seq(T[i],i=nops([T])-m..nops([T]))) fi;
%p A163840 od; subsop(1=NULL,[T]) end:
%p A163840 swing := proc(n) option remember; if n = 0 then 1 elif
%p A163840 irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
%p A163840 # Computes n rows of the triangle:
%p A163840 A163840 := n -> SumTria(swing,n,true);
%t A163840 sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n - k, n - i]*sf[i], {i, k, n}]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 28 2013 *)
%Y A163840 Row sums are A163843.
%Y A163840 Cf. A056040, A163865, A163841, A163842, A163650.
%K A163840 nonn,tabl,changed
%O A163840 0,2
%A A163840 _Peter Luschny_, Aug 06 2009