This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163841 #25 Aug 22 2025 04:25:21 %S A163841 1,3,2,11,8,6,45,34,26,20,195,150,116,90,70,873,678,528,412,322,252, %T A163841 3989,3116,2438,1910,1498,1176,924,18483,14494,11378,8940,7030,5532, %U A163841 4356,3432,86515,68032,53538 %N A163841 Triangle interpolating the swinging factorial (A056040) restricted to even indices with its binomial transform. Same as interpolating bilateral Schroeder paths (A026375) with the central binomial coefficients (A000984). %C A163841 For n >= 0, k >= 0 let T(n,k) = sum{i=k..n} binomial(n-k,n-i)*(2i)$ where i$ denotes the swinging factorial of i (A056040). Triangle read by rows. %H A163841 G. C. Greubel, <a href="/A163841/b163841.txt">Table of n, a(n) for the first 50 rows, flattened</a> %H A163841 Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011. %H A163841 Peter Luschny, <a href="http://www.luschny.de/math/swing/SwingingFactorial.html">Swinging Factorial</a>. %H A163841 Tony D. Noe, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Noe/noe35.html">On the Divisibility of Generalized Central Trinomial Coefficients</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7. %e A163841 Triangle begins %e A163841 1; %e A163841 3, 2; %e A163841 11, 8, 6; %e A163841 45, 34, 26, 20; %e A163841 195, 150, 116, 90, 70; %e A163841 873, 678, 528, 412, 322, 252; %e A163841 3989, 3116, 2438, 1910, 1498, 1176, 924; %p A163841 Computes n rows of the triangle. For the functions 'SumTria' and 'swing' see A163840. %p A163841 a := n -> SumTria(k->swing(2*k),n,true); %t A163841 sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n - k, n - i]*sf[2*i], {i, k, n}]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 28 2013 *) %Y A163841 Row sums are A163844. Cf. A056040, A163650, A163841, A163842, A163840, A026375, A002426, A000984. %K A163841 nonn,tabl,changed %O A163841 0,2 %A A163841 _Peter Luschny_, Aug 06 2009