cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163841 Triangle interpolating the swinging factorial (A056040) restricted to even indices with its binomial transform. Same as interpolating bilateral Schroeder paths (A026375) with the central binomial coefficients (A000984).

This page as a plain text file.
%I A163841 #25 Aug 22 2025 04:25:21
%S A163841 1,3,2,11,8,6,45,34,26,20,195,150,116,90,70,873,678,528,412,322,252,
%T A163841 3989,3116,2438,1910,1498,1176,924,18483,14494,11378,8940,7030,5532,
%U A163841 4356,3432,86515,68032,53538
%N A163841 Triangle interpolating the swinging factorial (A056040) restricted to even indices with its binomial transform. Same as interpolating bilateral Schroeder paths (A026375) with the central binomial coefficients (A000984).
%C A163841 For n >= 0, k >= 0 let T(n,k) = sum{i=k..n} binomial(n-k,n-i)*(2i)$ where i$ denotes the swinging factorial of i (A056040). Triangle read by rows.
%H A163841 G. C. Greubel, <a href="/A163841/b163841.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%H A163841 Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011.
%H A163841 Peter Luschny, <a href="http://www.luschny.de/math/swing/SwingingFactorial.html">Swinging Factorial</a>.
%H A163841 Tony D. Noe, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL9/Noe/noe35.html">On the Divisibility of Generalized Central Trinomial Coefficients</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
%e A163841 Triangle begins
%e A163841      1;
%e A163841      3,    2;
%e A163841     11,    8,    6;
%e A163841     45,   34,   26,   20;
%e A163841    195,  150,  116,   90,   70;
%e A163841    873,  678,  528,  412,  322,  252;
%e A163841   3989, 3116, 2438, 1910, 1498, 1176,  924;
%p A163841 Computes n rows of the triangle. For the functions 'SumTria' and 'swing' see A163840.
%p A163841 a := n -> SumTria(k->swing(2*k),n,true);
%t A163841 sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n - k, n - i]*sf[2*i], {i, k, n}]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 28 2013 *)
%Y A163841 Row sums are A163844. Cf. A056040, A163650, A163841, A163842, A163840, A026375, A002426, A000984.
%K A163841 nonn,tabl,changed
%O A163841 0,2
%A A163841 _Peter Luschny_, Aug 06 2009