cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163842 Triangle interpolating the swinging factorial (A056040) restricted to odd indices with its binomial transform. Same as interpolating the beta numbers 1/beta(n,n) (A002457) with (A163869). Triangle read by rows, for n >= 0, k >= 0.

This page as a plain text file.
%I A163842 #23 Aug 22 2025 04:32:13
%S A163842 1,7,6,43,36,30,249,206,170,140,1395,1146,940,770,630,7653,6258,5112,
%T A163842 4172,3402,2772,41381,33728,27470,22358,18186,14784,12012,221399,
%U A163842 180018,146290,118820,96462,78276,63492,51480
%N A163842 Triangle interpolating the swinging factorial (A056040) restricted to odd indices with its binomial transform. Same as interpolating the beta numbers 1/beta(n,n) (A002457) with (A163869). Triangle read by rows, for n >= 0, k >= 0.
%H A163842 G. C. Greubel, <a href="/A163842/b163842.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%H A163842 Peter Luschny, <a href="/A180000/a180000.pdf">Die schwingende Fakultät und Orbitalsysteme</a>, August 2011.
%H A163842 Peter Luschny, <a href="http://www.luschny.de/math/swing/SwingingFactorial.html">Swinging Factorial</a>.
%F A163842 T(n,k) = Sum_{i=k..n} binomial(n-k,n-i)*(2i+1)$ where i$ denotes the swinging factorial of i (A056040).
%e A163842 Triangle begins:
%e A163842       1;
%e A163842       7,     6;
%e A163842      43,    36,    30;
%e A163842     249,   206,   170,   140;
%e A163842    1395,  1146,   940,   770,   630;
%e A163842    7653,  6258,  5112,  4172,  3402,  2772;
%e A163842   41381, 33728, 27470, 22358, 18186, 14784, 12012;
%p A163842 # Computes n rows of the triangle. For the functions 'SumTria' and 'swing' see A163840.
%p A163842 a := n -> SumTria(k->swing(2*k+1),n,true);
%t A163842 sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n-k, n-i]*sf[2*i+1], {i, k, n}]; Table[t[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 28 2013 *)
%Y A163842 Row sums are A163845. Cf. A056040, A163650, A163841, A163842, A163840, A002426, A000984.
%K A163842 nonn,tabl,changed
%O A163842 0,2
%A A163842 _Peter Luschny_, Aug 06 2009