This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163848 #10 Aug 19 2017 13:25:57 %S A163848 7,11,23,47,83,167,227,443,1223,1367,1847,2027,3023,3251,5039,5927, %T A163848 9803,11447,13691,14639,16127,21611,24023,36479,44519,47087,49727, %U A163848 50627,54287,61007,64007,65027,88211,90599,95483,103043,104327,123203,137639 %N A163848 Primes p such that the differences between p and the closest squares surrounding p are primes. %H A163848 G. C. Greubel, <a href="/A163848/b163848.txt">Table of n, a(n) for n = 1..1000</a> %e A163848 7-4=3, 9-7=2; 11-9=2, 16-11=5; 23-16=7, 25-23=2; .. %t A163848 Clear[f,lst,p,n]; f[n_]:=IntegerPart[Sqrt[n]]; lst={};Do[p=Prime[n];If[PrimeQ[p-f[p]^2]&&PrimeQ[(f[p]+1)^2-p],AppendTo[lst,p]],{n,8!}];lst %t A163848 spQ[n_]:=Module[{lsq=Floor[Sqrt[n]]},And@@PrimeQ[{n-lsq^2, (lsq+1)^2-n}]]; Select[Prime[Range[140000]],spQ] (* _Harvey P. Dale_, May 08 2011 *) %o A163848 (PARI) forstep(n=3,1e6,2,if(isprime(2*n-3)&&isprime(k=n^2-2),print1(k","));if(isprime(2*n-1)&&isprime(k=n^2+2),print1(k","))) %K A163848 nonn %O A163848 1,1 %A A163848 _Vladimir Joseph Stephan Orlovsky_, Aug 05 2009 %E A163848 Program and editing by _Charles R Greathouse IV_, Nov 02 2009