cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163858 Number of sexy prime triples (p, p+6, p+12) where p+18 is not prime (although p-6 might be), with p <= n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7
Offset: 1

Views

Author

Daniel Forgues, Aug 05 2009, Aug 12 2009

Keywords

Comments

p-6 will be prime if the prime triple contains the last 3 primes of a sexy prime quadruple.
There are two sexy prime triples classes, (-1, -1, -1) (mod 6) and (+1, +1, +1) (mod 6). They should asymptotically have the same number of triples, if there is an infinity of such triples, although with a Chebyshev bias expected against the quadratic residue class triples (+1, +1, +1) (mod 6), which doesn't affect the asymptotic result. This sequence counts both classes.
Also the sexy prime triples of class (-1, -1, -1) (mod 6) fall within (11, 17, 23, 29) (mod 30) while the sexy prime triples of class (+1, +1, +1) (mod 6) fall within (1, 7, 13, 19) (mod 30).

Crossrefs

A046118 Smallest member of a sexy prime triple: value of p where (p, p+6, p+12) are all prime but p+18 is not (although p-6 might be.)
A046119 Middle member of a sexy prime triple: value of p+6 where (p, p+6, p+12) are all prime but p+18 is not (although p-6 might be.)
A046120 Largest member of a sexy prime triple, value of p+12 where (p, p+6, p+12) are all prime but p+18 is not (although p-6 might be.)