This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163870 #18 Dec 26 2024 15:21:05 %S A163870 2,2,3,2,4,3,2,5,2,3,4,6,2,7,3,5,2,4,8,2,3,6,9,2,4,5,10,3,7,2,11,2,3, %T A163870 4,6,8,12,5,2,13,3,9,2,4,7,14,2,3,5,6,10,15,2,4,8,16,3,11,2,17,5,7,2, %U A163870 3,4,6,9,12,18,2,19,3,13,2,4,5,8,10,20,2,3,6,7,14,21,2,4,11,22,3,5,9,15,2,23 %N A163870 Triangle read by rows: row n lists the nontrivial divisors of the n-th composite. %C A163870 Row n contains row A002808(n) of table A027750. %C A163870 T(n,k) = A027751(A002808(n),k+1), k = 1..A144925(n). - _Reinhard Zumkeller_, Mar 29 2014 %H A163870 Reinhard Zumkeller, <a href="/A163870/b163870.txt">Rows n = 1..1000 of table, flattened</a> %e A163870 The table starts in row n=1 (with the composite 4) as %e A163870 2; %e A163870 2,3; %e A163870 2,4; %e A163870 3; %e A163870 2,5; %e A163870 2,3,4,6; %e A163870 2,7; %e A163870 3,5; %e A163870 2,4,8; %e A163870 2,3,6,9; %e A163870 2,4,5,10. %t A163870 Divisors[Select[Range[50], CompositeQ]][[All, 2 ;; -2]] (* _Paolo Xausa_, Dec 26 2024 *) %o A163870 (Haskell) %o A163870 a163870 n k = a163870_tabf !! (n-1) !! (k-1) %o A163870 a163870_row n = a163870_tabf !! (n-1) %o A163870 a163870_tabf = filter (not . null) $ map tail a027751_tabf %o A163870 -- _Reinhard Zumkeller_, Mar 29 2014 %o A163870 (Python) %o A163870 from itertools import islice %o A163870 def g(): %o A163870 n, j = 1, 2 %o A163870 while True: %o A163870 n = (n << 1) | 1 %o A163870 p = 1 %o A163870 for k in range(2, (j >> 1) + 1): %o A163870 p = (p << 1) | 1 %o A163870 if n % p == 0: yield k %o A163870 j+=1 %o A163870 print(list(islice(g(),95))) # _DarĂo Clavijo_, Dec 16 2024 %Y A163870 Cf. A002808, A027750. %Y A163870 Cf. A144925 (row lengths), A062825 (row sums), A056608 (left edge), A160180 (right edge). %K A163870 nonn,tabf %O A163870 1,1 %A A163870 _Juri-Stepan Gerasimov_, Aug 06 2009 %E A163870 Entries checked by _R. J. Mathar_, Sep 22 2009