This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163874 #11 Jan 06 2025 04:51:45 %S A163874 0,0,0,3,4,5,3,3,3,6,7,8,9,10,11,9,9,9,12,13,14,12,12,12,15,16,17,18, %T A163874 19,20,18,18,18,21,22,23,24,25,26,24,24,24,27,28,29,27,27,27,30,31,32, %U A163874 33,34,35,33,33,33,36,37,38,36,36,36,39,40,41,42,43,44,42,42,42,45,46,47 %N A163874 a(n) = n-a(a(n-3)) with a(0) = a(1) = a(2) = 0. %C A163874 A very near generalization of the Hofstadter G-sequence A005206 since it is part of the following family of sequences (which would give for k=1 the original G-sequence): %C A163874 a(n)=n-a(a(n-k)) with a(0)=a(1)=...=a(k-1)=0 with k=1,2,3... (here k=3) - for general information about that family see A163873) Every a(n) occurs either exactly one or exactly four times (except from the initial values). A block of four occurrences of the same number n is after the first one interrupted by the following two elements: n+1, n+2 (e.g. see from a(18) to a(23): 12, 13, 14, 12, 12, 12). %C A163874 Since every natural number occurs in the sequence at least once and 0<=a(n)<=n for all n the elements can be ordered in such a way that every n is connected to its a(n) in a tree structure so that: %C A163874 ..a.. %C A163874 ..|.. %C A163874 .a(n) %C A163874 This will give for the first 41 elements the following (quadrary) tree: %C A163874 .......3..._.................................. %C A163874 ...../.|.\..\__............................... %C A163874 ..../..|..\....\__............................ %C A163874 .../...|...\......\__......................... %C A163874 ../....|....\........\........................ %C A163874 .......6.....7........8....................... %C A163874 .......|.....|........|....................... %C A163874 .......9.....10.......11...................... %C A163874 ....../.\\\../......../....................... %C A163874 ...../...\\\/________/_________............... %C A163874 ..../.....\/________/________..\.............. %C A163874 .../....../\_______/____.....\..\............. %C A163874 ...|......|......./.....\.....\..\............ %C A163874 ..12......13....14.....15.....16..17.......... %C A163874 ...|\\\.../...../.......\......\...\.......... %C A163874 ...|.\\\_/_____/___......\......\...\......... %C A163874 ...|..\\/_____/__..\......\......\...\........ %C A163874 ...|...X_____/_..\..\......\......\...\....... %C A163874 ...|../...../..\..\..\......|......|...|...... %C A163874 ..18..19..20...21.22.23.....24.....25..26..... %C A163874 ..|\\\./../.....\..\..\.....|\\\.../.../...... %C A163874 ..|.\\X__/____...\..\..\....|.\\\_/___/___.... %C A163874 ..|..X\_/___..\...\..\..\...|..\\/___/__..\... %C A163874 ..|./.\/__..\..\...\..\..\..|...X___/_..\..\.. %C A163874 ../.|..\..\..\..\...|..|..|.|../.../..\..\..\. %C A163874 .27.28.29.30.31.32.33.34.35.36.37.38..39.40.41 %C A163874 (X means two crossing paths) %C A163874 Conjecture: This features a certain structure (similar to the G-sequence A005206 or other sequences of this family: A163875 and A163873). If the (below) following two constructs (C and D) are added on top of their ends (either marked with C or D) one will (if starting with one instance of D) receive the above tree (x marks a node, o marks spaces for nodes that are not part of the construct but will be filled by the other construct): %C A163874 Diagram of D: %C A163874 ......x........... %C A163874 ..../..\\\........ %C A163874 .../....\\.\...... %C A163874 ..|......\\..\.... %C A163874 ..|.......\.\..\.. %C A163874 ..D..o.o...x.x..x. %C A163874 ...........|.|..|. %C A163874 ...........D.C..C. %C A163874 (o will be filled by C) %C A163874 Diagram of C: %C A163874 \\...x. %C A163874 \\\./.. %C A163874 .\\/... %C A163874 ../\\.. %C A163874 ./.\\\. %C A163874 C...\\\ %C A163874 (This means construct C crosses on its way from a(n) to n exactly three other paths, e.g. from 25 to 37) %H A163874 Paolo Xausa, <a href="/A163874/b163874.txt">Table of n, a(n) for n = 0..10000</a> %t A163874 A163874[n_] := A163874[n] = If[n < 3, 0, n - A163874[A163874[n-3]]]; %t A163874 Array[A163874, 100, 0] (* _Paolo Xausa_, Jan 05 2025 *) %K A163874 nonn %O A163874 0,4 %A A163874 Daniel Platt (d.platt(AT)web.de), Aug 08 2009, Sep 14 2009