This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163894 #11 Nov 22 2023 05:04:18 %S A163894 0,2,4,2,4,2,24,2,4,2,4,2,33,2,4,2,4,2,24,2,4,2,4,2,76,2,4,2,4,2,24,2, %T A163894 4,2,4,2,33,2,4,2,4,2,24,2,4,2,4,2,76,2,4,2,4,2,24,2,4,2,4,2,33,2,4,2, %U A163894 4,2,24,2,4,2,4,2,390,2,4,2,4,2,24,2,4,2,4,2,33,2,4,2,4,2,24,2,4,2,4 %N A163894 The least i for which A163355^n(i) is not equal to i, 0 if no such i exists, i.e., when A163355^n = A001477. %C A163894 A163355^n means n-fold application of A163355, i.e., A163355^2 = A163905, A163355^3 = A163915. By convention A163355^0 = A001477. %H A163894 A. Karttunen, <a href="/A163894/b163894.txt">Table of n, a(n) for n = 0..4095</a> %p A163894 A163894 := proc(n) %p A163894 local i,a355,a,itr ; %p A163894 if n = 0 then %p A163894 return 0 ; %p A163894 end if; %p A163894 a := 0 ; %p A163894 for i from 0 do %p A163894 a355 := A163355(i) ; %p A163894 for itr from 2 to n do %p A163894 a355 := A163355(a355) ; %p A163894 end do: %p A163894 if a355 <> i then %p A163894 return i ; %p A163894 end if; %p A163894 end do: %p A163894 end proc: %p A163894 seq(A163894(n),n=0..100) ; # _R. J. Mathar_, Nov 22 2023 %o A163894 (MIT Scheme:) %o A163894 (define (A163894 n) (if (zero? n) 0 (let loop ((i 1) (n-th_power (compose-fun-to-n-th-power a163355 n))) (cond ((not (= i (n-th_power i))) i) (else (loop (1+ i) n-th_power)))))) %o A163894 (define (compose-fun-to-n-th-power fun n) (cond ((zero? n) (lambda (x) x)) (else (lambda (x) (fun ((compose-fun-to-n-th-power fun (- n 1)) x)))))) %Y A163894 See A163890, A163895, A163896. %K A163894 nonn %O A163894 0,2 %A A163894 _Antti Karttunen_, Sep 19 2009