This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163925 #9 Jul 16 2015 21:56:35 %S A163925 1,4,4,6,9,4,6,8,6,8,9,10,15,25,6,8,9,10,8,9,10,12,14,15,21,25,35,49, %T A163925 8,9,10,12,14,16,9,10,12,14,15,18,21,27,10,12,14,15,16,20,25,12,14,15, %U A163925 16,18,20,21,22,25,27,33,35,49,55,77,121,12,14,15,16,18,22,14,15,16,18,20 %N A163925 Table, row n is nonprime numbers k such that the largest divisor of n*k <= sqrt(n*k) is n. %C A163925 Every prime > n also has this property. %C A163925 If a*b is a composite number > n^2, with a <= b, then a*n and b are both > n, and one of them must be <= sqrt(n*a*b); thus n^2 is an upper bound for the numbers in row n. %H A163925 Franklin T. Adams-Watters, <a href="/A163925/b163925.txt">Rows n=1..100 of table, flattened</a> %e A163925 The table starts: %e A163925 1: 1 %e A163925 2: 4 %e A163925 3: 4,6,9 %e A163925 4: 4,6,8 %e A163925 5: 6,8,9,10,15,25 %e A163925 6: 6,8,9,10 %o A163925 (PARI) arow(n)=local(v,d);v=[];for(k=n,n^2,if(!isprime(k),d=divisors(n*k);if(n==d[(#d+1)\2],v=concat(v,[k]))));v %o A163925 (Haskell) %o A163925 a163925 n k = a163925_tabf !! (n-1) !! (k-1) %o A163925 a163925_tabf = map a163925_row [1..] %o A163925 a163925_row n = [k | k <- takeWhile (<= n ^ 2) a018252_list, %o A163925 let k' = k * n, let divs = a027750_row k', %o A163925 last (takeWhile ((<= k') . (^ 2)) divs) == n] %o A163925 -- _Reinhard Zumkeller_, Mar 15 2014 %Y A163925 Cf. A163926 (row lengths), A161344, A033676. %Y A163925 Cf. A018252, A027750. %K A163925 nonn,tabf,look %O A163925 1,2 %A A163925 _Franklin T. Adams-Watters_, Aug 06 2009