cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163938 Triangle related to the o.g.f.s. of the right hand columns of A163932 (E(x, m=3, n)).

This page as a plain text file.
%I A163938 #11 Aug 14 2017 03:00:37
%S A163938 1,3,3,11,28,6,50,225,135,10,274,1858,2092,486,15,1764,16464,29148,
%T A163938 13482,1491,21,13068,158352,398640,301220,70485,4152,28,109584,
%U A163938 1655172,5552724,6132780,2432070,322971,10863,36
%N A163938 Triangle related to the o.g.f.s. of the right hand columns of A163932 (E(x, m=3, n)).
%C A163938 The asymptotic expansions of the higher order exponential integral E(x, m=3, n) lead to triangle A163932, see A163931 for information on the E(x,m,n). The o.g.f.s. of the right hand columns of triangle A163932 have a nice structure Gf(p) = W3(z,p)/(1-z)^(2*p+1) with p = 1 for the first right hand column, p = 2 for the second right hand column, etc. The coefficients of the W3(z,p) polynomials lead to the triangle given above, n >= 1 and 1 <= m <= n. The row sums of this triangle lead to A001879, see A163936 for more information.
%H A163938 G. C. Greubel, <a href="/A163938/b163938.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%F A163938 a(n,m) = Sum_{k=0..(m-1)} (-1)^(n+k+1)*binomial(m-k+1,2) *binomial(2*n+1,k) *stirling1(m+n-k,m-k+1), for 1 <= m <= n.
%e A163938 The first few W3(z,p) polynomials are:
%e A163938 W3(z,p=1) = 1/(1-z)^3
%e A163938 W3(z,p=2) = (3 + 3*z)/(1-z)^5
%e A163938 W3(z,p=3) = (11 + 28*z + 6*z^2)/(1-z)^7
%e A163938 W3(z,p=4) = (50 + 225*z + 135*z^2 + 10*z^3)/(1-z)^9
%p A163938 with(combinat): a := proc(n, m): add((-1)^(n+k+1)*((m-k+1)*(m-k)/2!)*binomial(2*n+1, k)*stirling1(m+n-k, m-k+1), k=0..m-1) end: seq(seq(a(n, m), m=1..n), n=1..8); # _Johannes W. Meijer_, revised Nov 27 2012
%t A163938 Table[Sum[(-1)^(n + k + 1)*Binomial[m - k + 1, 2]*Binomial[2*n + 1, k]*StirlingS1[m + n - k, m - k + 1], {k, 0, m - 1}], {n, 1, 50}, {m, 1, n}] // Flatten (* _G. C. Greubel_, Aug 13 2017 *)
%o A163938 (PARI) for(n=1,10, for(m=1,n, print1(sum(k=0,m-1, (-1)^(n+k+1)* binomial(m-k+1,2)*binomial(2*n+1,k) *stirling(m+n-k,m-k+1, 1)) ,", "))) \\ _G. C. Greubel_, Aug 13 2017
%Y A163938 Row sums equal A001879.
%Y A163938 A000254 equals the first left hand column.
%Y A163938 A000217 equals the first right hand column.
%Y A163938 Cf. A163931 (E(x,m,n)) and A163932.
%Y A163938 Cf. A163936 (E(x,m=1,n)), A163937 (E(x,m=2,n)) and A163939 (E(x,m=4,n)).
%K A163938 easy,nonn,tabl
%O A163938 1,2
%A A163938 _Johannes W. Meijer_, Aug 13 2009