This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163942 #17 Mar 09 2023 16:15:01 %S A163942 1,14,121,834,5037,27918,145777,728858,3526933,16640262,76952793, %T A163942 350167122,1572467389,6984206846,30735634369,134202204426, %U A163942 582040933605,2509672804470,10766469841705,45982221941570,195609944400781 %N A163942 Fifth right hand column of triangle A163940. %H A163942 G. C. Greubel, <a href="/A163942/b163942.txt">Table of n, a(n) for n = 0..1000</a> %H A163942 Harry Crane, <a href="https://ajc.maths.uq.edu.au/pdf/61/ajc_v61_p057.pdf">Left-right arrangements, set partitions, and pattern avoidance</a>, Australasian Journal of Combinatorics, 61(1) (2015), 57-72. %H A163942 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (14,-75,190,-224,96). %F A163942 G.f.: 1/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)^2). %F A163942 a(n) = (1/18)*(3^(n+6) + (3*n-10)*4^(n+3) - 9*2^(n+3) + 1). %F A163942 a(n) = 14*a(n-1) - 75*a(n-2) + 190*a(n-3) - 224*a(n-4) + 96*a(n-5). %F A163942 E.g.f.: (1/18)*( 729*exp(3*x) + 128*(6*x-5)*exp(4*x) - 72*exp(2*x) + exp(x)). - _G. C. Greubel_, Aug 13 2017 %t A163942 CoefficientList[Series[1/((1 - x)*(1 - 2*x)*(1 - 3*x)*(1 - 4*x)^2), {x, 0, 50}], x] (* _G. C. Greubel_, Aug 13 2017 *) %t A163942 LinearRecurrence[{14,-75,190,-224,96},{1,14,121,834,5037},30] (* _Harvey P. Dale_, Mar 09 2023 *) %o A163942 (PARI) Vec(1/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)^2) + O(x^30)) \\ _Michel Marcus_, Feb 12 2015 %Y A163942 Equals the fifth right hand column of A163940. %Y A163942 A163941 is another right hand column. %K A163942 easy,nonn %O A163942 0,2 %A A163942 _Johannes W. Meijer_, Aug 13 2009